Regularity analysis for systems of reaction-diffusion equations  [ Analyse de régularité de systèmes d'équations de réaction-diffusion ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 1, p. 117-142
Ce travail est consacré à l'étude de la régularité des solutions de certains systèmes d'équations de réaction-diffusion. En particulier, nous montrons que les solutions peuvent être bornées et régulières en dimensions un et deux alors qu'en dimensions supérieures nous discutons la dimension de Hausdorff de l'ensemble des points singuliers. L'approche proposée ici s'inspire de la méthode de De Giorgi pour étudier la régularité de problèmes elliptiques avec des coefficients discontinus. La preuve exploite la stucture spécifique des systèmes considérés et n'est pas une simple adaptation de techniques scalaires. L'entropie associée naturellement au système joue un rôle crucial dans cette analyse.
This paper is devoted to the study of the regularity of solutions to some systems of reaction-diffusion equations. In particular, we show the global boundedness and regularity of the solutions in one and two dimensions. In addition, we discuss the Hausdorff dimension of the set of singularities in higher dimensions. Our approach is inspired by De Giorgi's method for elliptic regularity with rough coefficients. The proof uses the specific structure of the system to be considered and is not a mere adaptation of scalar techniques; in particular the natural entropy of the system plays a crucial role in the analysis.
DOI : https://doi.org/10.24033/asens.2117
Classification:  35Q99,  35B25,  82C70
Mots clés: systèmes de réaction-diffusion, régularité des solutions
@article{ASENS_2010_4_43_1_117_0,
     author = {Goudon, Thierry and Vasseur, Alexis},
     title = {Regularity analysis for systems of reaction-diffusion equations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 43},
     number = {1},
     year = {2010},
     pages = {117-142},
     doi = {10.24033/asens.2117},
     zbl = {1191.35202},
     mrnumber = {2583266},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2010_4_43_1_117_0}
}
Goudon, Thierry; Vasseur, Alexis. Regularity analysis for systems of reaction-diffusion equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 1, pp. 117-142. doi : 10.24033/asens.2117. http://www.numdam.org/item/ASENS_2010_4_43_1_117_0/

[1] J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, J. Differential Equations 27 (1978), 224-265. | MR 461576 | Zbl 0376.35002

[2] M. Bisi & L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems, J. Stat. Phys. 124 (2006), 881-912. | MR 2264629 | Zbl 1134.82323

[3] H. Brezis, Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, 1983. | MR 697382 | Zbl 0511.46001

[4] L. Caffarelli, R. V. Kohn & L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. | MR 673830 | Zbl 0509.35067

[5] L. Caffarelli & A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, to appear in Annals of Math.. | MR 2680400 | Zbl 1204.35063

[6] J.-F. Collet, Some modelling issues in the theory of fragmentation-coagulation systems, Commun. Math. Sci. 2 (2004), 35-54. | MR 2119872 | Zbl 1153.82328

[7] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3 (1957), 25-43. | MR 93649 | Zbl 0084.31901

[8] L. Desvillettes & K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl. 319 (2006), 157-176. | MR 2217853 | Zbl 1096.35018

[9] L. Desvillettes & K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds, Rev. Mat. Iberoam. 24 (2008), 407-431. | MR 2459198 | Zbl 1171.35330

[10] L. Desvillettes, K. Fellner, M. Pierre & J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Advanced Nonlinear Studies 7 (2007), 491-511. | MR 2340282 | Zbl pre05210947

[11] P. Erdi & J. Tóth, Mathematical models of chemical reactions, Nonlinear Science: Theory and Applications, Manchester Univ. Press, 1989. | MR 981593 | Zbl 0696.92027

[12] H. Federer, Geometric measure theory, Die Grund. Math. Wiss., Band 153, Springer New York Inc., New York, 1969. | MR 257325 | Zbl 0176.00801

[13] W. Feng, Coupled system of reaction-diffusion equations and applications in carrier facilitated diffusion, Nonlinear Anal. 17 (1991), 285-311. | MR 1120978 | Zbl 0772.35030

[14] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath. 28, Springer, 1979. | MR 527914 | Zbl 0403.92004

[15] Y. Giga & R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. | MR 784476 | Zbl 0585.35051

[16] O. A. Ladyzenskaia, V. A. Solonnikov & N. N. Uralceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monographs 23, AMS, 1968. | Zbl 0174.15403

[17] F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure and Appl. Math. 51 (1998), 241-257. | MR 1488514 | Zbl 0958.35102

[18] A. Mellet & A. Vasseur, L p estimates for quantities advected by a compressible flow, J. Math. Anal. Appl. 355 (2009), 548-563. | MR 2521733 | Zbl 1172.35056

[19] J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal. 20 (1989), 1128-1144. | MR 1009350 | Zbl 0692.35055

[20] J. Morgan, Global existence for semilinear parabolic systems via Lyapunov type methods, in Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), Lecture Notes in Math. 1394, Springer, 1989, 117-121. | MR 1021018 | Zbl 0688.35038

[21] J. Morgan, Boundedness and decay results for reaction-diffusion systems, SIAM J. Math. Anal. 21 (1990), 1172-1189. | MR 1062398 | Zbl 0723.35039

[22] J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations 3 (1990), 973-978. | MR 1059344 | Zbl 0747.35012

[23] J. Morgan & S. Waggonner, Global existence for a class of quasilinear reaction-diffusion systems, Commun. Appl. Anal. 8 (2004), 153-166. | MR 2055878 | Zbl 1122.35058

[24] J. D. Murray, Mathematical biology, Interdisciplinary Applied Math. 17 & 18, Springer, 2003. | MR 1952568 | Zbl 0682.92001

[25] M. Pierre, Weak solutions and supersolutions in L 1 for reaction-diffusion systems, J. Evol. Equ. 3 (2003), 153-168. | MR 1977432 | Zbl 1026.35047

[26] M. Pierre & D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev. 42 (2000), 93-106 (electronic). | MR 1738101 | Zbl 0942.35033

[27] M. Pierre & R. Texier-Picard, Global existence for degenerate quadratic reaction-diffusion systems, to appear in Ann. IHP Anal. non linéaire. | Numdam | MR 2566699 | Zbl 1180.35288

[28] F. Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in Math. 102, Springer, 1984. | MR 755878 | Zbl 0546.35003

[29] V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math. 66 (1976), 535-552. | MR 454426 | Zbl 0325.35064

[30] V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), 55-97. | MR 510154 | Zbl 0357.35071

[31] L. W. Somathilake & J. M. J. J. Peiris, Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients, J. Appl. Math. 1 (2005), 23-36. | MR 2144501 | Zbl 1175.35076

[32] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | Zbl 0207.13501

[33] A. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl. 14 (2007), 753-785. | Zbl 1142.35066

[34] C. Villani, Hypocoercive diffusion operators, in Proceedings of the International Congress of Mathematicians, 2006. | Zbl 1130.35027

[35] F. B. Weissler, An L blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math. 38 (1985), 291-295. | Zbl 0592.35071