@article{ASENS_2007_4_40_6_885_0, author = {Dolbeault, Jean and Esteban, Maria Jesus and Duoandikoetxea, Javier and Vega, Luis}, title = {Hardy-type estimates for Dirac operators}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {885--900}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {6}, year = {2007}, doi = {10.1016/j.ansens.2007.11.002}, zbl = {1156.35067}, mrnumber = {2419852}, language = {en}, url = {www.numdam.org/item/ASENS_2007_4_40_6_885_0/} }
Dolbeault, Jean; Esteban, Maria J.; Duoandikoetxea, Javier; Vega, Luis. Hardy-type estimates for Dirac operators. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 6, pp. 885-900. doi : 10.1016/j.ansens.2007.11.002. http://www.numdam.org/item/ASENS_2007_4_40_6_885_0/
[1] An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal. 216 (2004) 1-21. | MR 2091354 | Zbl 1060.35120
, , , ,[2] On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000) 208-226. | MR 1761368 | Zbl 0982.47006
, , ,[3] General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators, J. Eur. Math. Soc. 8 (2006) 243-251. | MR 2239275 | Zbl pre05053362
, , ,[4] Some weighted Gagliardo-Nirenberg inequalities and applications, Proc. Amer. Math. Soc. 135 (2007) 2795-2802. | Zbl 1120.26009
, ,[5] Optimizing improved Hardy inequalities, J. Funct. Anal. 192 (2002) 186-233. | MR 1918494 | Zbl 1030.26018
, ,[6] Minimax principle for the Dirac equation, Phys. Rev. Lett. 57 (1986) 1091-1094. | MR 854208
,[7] The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. | MR 1219537 | Zbl 0765.47023
,