@article{ASENS_2004_4_37_1_105_0, author = {Helffer, Bernard and Morame, Abderemane}, title = {Magnetic bottles for the {Neumann} problem : curvature effects in the case of dimension $3$ (general case)}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {105--170}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {1}, year = {2004}, doi = {10.1016/j.ansens.2003.04.003}, mrnumber = {2050207}, zbl = {1057.35061}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2003.04.003/} }
TY - JOUR AU - Helffer, Bernard AU - Morame, Abderemane TI - Magnetic bottles for the Neumann problem : curvature effects in the case of dimension $3$ (general case) JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 105 EP - 170 VL - 37 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2003.04.003/ DO - 10.1016/j.ansens.2003.04.003 LA - en ID - ASENS_2004_4_37_1_105_0 ER -
%0 Journal Article %A Helffer, Bernard %A Morame, Abderemane %T Magnetic bottles for the Neumann problem : curvature effects in the case of dimension $3$ (general case) %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 105-170 %V 37 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2003.04.003/ %R 10.1016/j.ansens.2003.04.003 %G en %F ASENS_2004_4_37_1_105_0
Helffer, Bernard; Morame, Abderemane. Magnetic bottles for the Neumann problem : curvature effects in the case of dimension $3$ (general case). Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 37 (2004) no. 1, pp. 105-170. doi : 10.1016/j.ansens.2003.04.003. http://www.numdam.org/articles/10.1016/j.ansens.2003.04.003/
[1] Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Math. Notes, vol. 29, Princeton University Press, 1982. | MR | Zbl
,[2] Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, IMA Preprint Series 1416 (1996) , Arch. Rational Mech. Anal. 142 (1998) 1-43. | MR | Zbl
, , ,[3] Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39 (1998) 1272-1284. | MR | Zbl
, ,[4] Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation, M 26 (2) (1992) 235-287. | Numdam | MR | Zbl
,[5] E.B. Davies, Spectral Theory and Differential Operators, in: Cambridge Studies in Advanced Mathematics. | Zbl
[6] Eigenvalues variation I, Neumann problem for Sturm-Liouville operators, J. Differential Equations 104 (2) (1993) 243-262. | MR | Zbl
, ,[7] Minimal Surfaces I, Springer-Verlag, Berlin, 1992. | MR | Zbl
, , , ,[8] Introduction to the Semiclassical Analysis for the Schrödinger Operator and Applications, Springer Lecture Notes in Math., vol. 1336, 1988. | MR | Zbl
,[9] Semi-classical analysis for the Schrödinger operator with magnetic wells (after R. Montgomery, B. Helffer and A. Mohamed), in: Proceedings of the Conference in Minneapolis, IMA Volumes in Mathematics and its Applications, vol. 95, Springer-Verlag, 1997, pp. 99-114. | MR | Zbl
,[10] Bouteilles magnétiques et supraconductivité (d'après Helffer-Morame, Lu-Pan et Helffer-Pan), Séminaire EDP de l'École Polytechnique 2000-2001, Reprint , http://www.math.polytechnique.fr. | Numdam | MR | Zbl
,[11] Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138 (1) (1996) 40-81. | MR | Zbl
, ,[12] Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2) (2001) 604-680. | MR | Zbl
, ,[13] Magnetic bottles in connection with superconductivity: Case of dimension 3, Proc. Indian Acad. Sci. (Math. Sci.) 112 (1) (2002). | MR
, ,[14] B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3, Preprint mp_arc 01-362, 2001. | MR
[15] B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3, general case, Preprint mp_arc 02-145, 2002.
[16] Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser, 1985. | MR | Zbl
, ,[17] Upper critical field and location of surface nucleation of superconductivity, Annales de l'Institut Henri Poincaré (Analyse Non Linéaire) 20 (1) (2003) 145-181. | Numdam | MR | Zbl
, ,[18] Multiple wells in the semiclassical limit I, Comm. PDE 9 (4) (1984) 337-408. | MR | Zbl
, ,[19] Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D 127 (1999) 73-104. | MR | Zbl
, ,[20] Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys. 40 (6) (1999) 2647-2670. | MR | Zbl
, ,[21] Gauge invariant eigenvalue problems on R2 and R2+, Trans. Amer. Math. Soc. 352 (3) (2000) 1247-1276. | MR | Zbl
, ,[22] Ginzburg-Landau system and surface nucleation of superconductivity, in: Proceeding of the IMS Workshop on Reaction-Diffusion systems, Chinese University of Hong-Kong, 1999.
, ,[23] Surface nucleation of superconductivity in 3-dimension, J. Differential Equations 168 (2) (2000) 386-452. | MR | Zbl
, ,[24] Hearing the zerolocus of a magnetic field, Comm. Math. Phys. 168 (1995) 651-675. | MR | Zbl
,[25] Upper critical field for superconductors with edges and corners, Calc. Var. PDE 14 (2002) 447-482. | MR | Zbl
,[26] X.-B. Pan, Surface conductivity in 3 dimensions, Personal communication, October 2001, Unpublished.
[27] Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domain, Trans. Amer. Math. Soc. 354 (10) (2002) 4201-4227. | MR | Zbl
, ,[28] Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210 (2000) 413-446. | MR | Zbl
, , ,[29] Methods of modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. | MR | Zbl
, ,[30] Type II Superconductivity, Pergamon, Oxford, 1969.
, , ,[31] Differential Geometry, Publish or Perish, Houston, 1975.
,[32] The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, 1992. | MR | Zbl
,Cited by Sources: