Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs (m) sur un corps abélien
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 5, p. 641-672
@article{ASENS_2002_4_35_5_641_0,
     author = {Benois, Denis and Nguyen Quang Do, Thong},
     title = {Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs $\mathbb {Q}(m)$ sur un corps ab\'elien},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 35},
     number = {5},
     year = {2002},
     pages = {641-672},
     doi = {10.1016/s0012-9593(02)01104-7},
     zbl = {01910884},
     mrnumber = {1951439},
     language = {fr},
     url = {http://www.numdam.org/item/ASENS_2002_4_35_5_641_0}
}
Benois, Denis; Nguyen Quang Do, Thong. Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs $\mathbb {Q}(m)$ sur un corps abélien. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 5, pp. 641-672. doi : 10.1016/s0012-9593(02)01104-7. http://www.numdam.org/item/ASENS_2002_4_35_5_641_0/

[1] Banaszak G, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compositio Math. 86 (3) (1993) 281-305. | Numdam | MR 1219629 | Zbl 0778.11066

[2] Beilinson A., Polylogarithms and cyclotomic elements, Preprint, 1990.

[3] Belliard J.-R, Nguyen Quang Do T, Formules de classes pour les corps abéliens réels, Ann. Inst. Fourier 51 (4) (2001) 903-937. | Numdam | MR 1849210 | Zbl 1007.11063

[4] Belliard J.-R., Nguyen Quang Do T., Modified circular p-units and annihilation of real classes, prépublication, 2001.

[5] Benois D., Burns D., travail en préparation.

[6] Borel A, Cohomologie de SLn et valeurs de fonctions zêta, Ann. Scuola Norm. Sup. Pisa 417 (1974) 613-636. | Numdam | MR 506168 | Zbl 0382.57027

[7] Bloch S, Kato K, L-functions and Tamagawa numbers of motives, Grothendieck Festschrift 1 (1990) 333-400. | MR 1086888 | Zbl 0768.14001

[8] Burns D, Flach M, Motivic L-functions and Galois module structure, Math. Ann. 305 (1996) 65-102. | MR 1386106 | Zbl 0867.11081

[9] Burns D., Greither C., On the equivariant Tamagawa number conjecture for Tate motives, Preprint, 2000. | MR 1992015

[10] Beilinson A, Macpherson R, Schechtman V, Notes on motivic cohomology, Duke Math. J. 54 (1987) 679-710. | MR 899412 | Zbl 0632.14010

[11] Coleman R, Local units modulo circular units, Proc. Amer. Math. Soc. 89 (1983) 1-7. | MR 706497 | Zbl 0528.12005

[12] Deligne P, Le groupe fondamental de la droite projective moins trois points, in: Galois Groups Over Q, MSRI Publications, 16, Springer, 1989, pp. 79-297. | MR 1012168 | Zbl 0742.14022

[13] Dwyer W.-G, Friedlander E.M, Algebraic and etale K-theory, Trans. Amer. Math. Soc. 292 (1985) 247-280. | MR 805962 | Zbl 0581.14012

[14] Flach M, A generalization of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990) 113-127. | MR 1079004 | Zbl 0711.14001

[15] Fontaine J.-M, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local ; construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982) 529-577. | MR 657238 | Zbl 0544.14016

[16] Fontaine J.-M, Le corps des périodes p-adiques, Astérisque 223 (1994) 59-102. | MR 1293971

[17] Fontaine J.-M, Valeurs spéciales de fonctions L des motifs, Séminaire Bourbaki, exposé 751, Astérisque 206 (1992) 205-249. | Numdam | MR 1206069 | Zbl 0799.14006

[18] Fontaine J.-M, Perrin-Riou B, Autour des conjectures de Bloch et Kato ; cohomologie galoisienne et valeurs de fonctions L, in: Motives, Proc. Symp. in Pure Math., 55, 1994, pp. 599-706. | MR 1265546 | Zbl 0821.14013

[19] Gillard R, Unité cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier 29 (1) (1979) 49-79. | Numdam | MR 526777 | Zbl 0387.12002

[20] Greither C, Class groups of abelian fields and the main conjecture, Ann. Inst. Fourier 42 (1992) 449-499. | Numdam | MR 1182638 | Zbl 0729.11053

[21] Gross B.H., On the values of Artin L-functions, Preprint, 1980. | MR 2154331 | Zbl 1169.11050

[22] Huber A., Kings G., Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Preprint, 2000. | MR 2002643 | Zbl 1044.11095

[23] Huber A, Wildeshaus J, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. J. DMV3 (1998) 27-133. | MR 1643974 | Zbl 0906.19004

[24] Kahn B, On the Lichtenbaum-Quillen conjecture, in: Algebraic K-theory and Algebraic Topology, NATO Proc. Lake Louise, 407, 1993, pp. 147-166. | MR 1367295 | Zbl 0885.19004

[25] Kato K, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. Part I, in: Lecture Notes in Math., 1553, Springer, 1993, pp. 50-163. | MR 1338860 | Zbl 0815.11051

[26] Kato K., Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B d R . Part II, Preprint, 1993. | MR 1338860

[27] Kolster M., Nguyen Quang Do T., Universal distribution lattices for abelian number fields, Preprint, 2000.

[28] Kolster M, Nguyen Quang Do T, Fleckinger V, Twisted S-units, p-adic class number formulas and the Lichtenbaum conjectures, Duke Math. J. 84 (1996) 679-717. | MR 1408541 | Zbl 0863.19003

[29] Kuzmin L.V, On formulae for the class number of real abelian fields, Russian Math. Izv. 60 (4) (1996) 695-761. | MR 1416925 | Zbl 1007.11065

[30] Leopoldt H.-W, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959) 119-149. | MR 108479 | Zbl 0098.03403

[31] Lettl G, Relative Galois module structure of integers of local abelian fields, Acta Arithmetica 85 (3) (1998) 235-247. | MR 1627831 | Zbl 0910.11050

[32] Milne J.S, Arithmetic Duality Theorems, Perspectives in Mathematics, 1, Academic Press, Boston, 1986. | MR 881804 | Zbl 0613.14019

[33] Neukirch J, The Beilinson conjecture for algebraic number fields, in: Beilinson's Conjectures on Special Values of L-functions, Perspectives in Math., 4, Academic Press, 1988, pp. 193-247. | MR 944995 | Zbl 0651.12009

[34] Nguyen Quang Do T, Analogues supérieurs du noyau sauvage, J. Théorie des Nombres Bordeaux 4 (1992) 263-271. | Numdam | MR 1208865 | Zbl 0783.11042

[35] Perrin-Riou B, Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994) 81-149. | MR 1248080 | Zbl 0838.11071

[36] Perrin-Riou B, Fonctions L p-adiques, in: Proc. Int. Congress of Math., Birkhäuser Verlag, Zürich, 1995, pp. 400-410. | MR 1403940 | Zbl 0853.11093

[37] Perrin-Riou B, Systèmes d'Euler p-adiques et théorie d'Iwasawa, Annales de l'Institut Fourier 48 (5) (1998) 1231-1307. | Numdam | MR 1662231 | Zbl 0930.11078

[38] Schneider P, Über gewisse Galoiscohomologiegruppen, Math. Zeit. 168 (1979) 181-205. | MR 544704 | Zbl 0421.12024

[39] Schneider P, Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-functions, Perspectives in Math., 4, Academic Press, 1988, pp. 1-35. | MR 944989 | Zbl 0673.14007

[40] Sinnott W, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1981) 181-234. | MR 595586 | Zbl 0465.12001

[41] Solomon D, On a construction of p-units in abelian fields, Invent. Math. 109 (1992) 329-350. | MR 1172694 | Zbl 0772.11043

[42] Soulé C, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251-295. | MR 553999 | Zbl 0437.12008

[43] Soulé C, Régulateurs, Sém. Bourbaki (1984/85), exp. n° 644, Astérisque 133-134 (1986) 237-253. | Numdam | MR 837223 | Zbl 0617.14008

[44] Tate J, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976) 257-274. | MR 429837 | Zbl 0359.12011

[45] Tsuji T, Semi-local units modulo cyclotomic units, J. Number Theory 46 (1999) 158-178. | MR 1706941 | Zbl 0948.11042

[46] Villemot L., Étude du quotient des unités semi-locales par les unités cyclotomiques dans les Zp-extensions des corps de nombres abéliens réels, thèse, Orsay, 1981. | MR 627614 | Zbl 0473.12003

[47] Washington L.C, Introduction to the Theory of Cyclotomic Fields, GTM, 85, Springer, 1982. | MR 718674