Petites valeurs propres et classe d’Euler des S1- fibrés
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 5, p. 611-645
@article{ASENS_2000_4_33_5_611_0,
     author = {Colbois, Bruno and Courtois, Gilles},
     title = {Petites valeurs propres et classe d'Euler des $S1-$ fibr\'es},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 33},
     number = {5},
     year = {2000},
     pages = {611-645},
     doi = {10.1016/s0012-9593(00)01048-x},
     zbl = {0968.58001},
     language = {fr},
     url = {http://www.numdam.org/item/ASENS_2000_4_33_5_611_0}
}
Colbois, Bruno; Courtois, Gilles. Petites valeurs propres et classe d’Euler des $S1-$ fibrés. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 5, pp. 611-645. doi : 10.1016/s0012-9593(00)01048-x. http://www.numdam.org/item/ASENS_2000_4_33_5_611_0/

[1] Besse A.L., Einstein Manifolds, Ergebnisse der Math. und ihrer Grenzgebiete Band 10, Springer-Verlag, Berlin-Heidelberg-New York, 1987. | MR 88f:53087 | Zbl 0613.53001

[2] Bott R., Tu L. W., Differential Form in Algebraic Topology, Graduate Texts in Mathematics 82, Springer-Verlag, 1982. | MR 83i:57016 | Zbl 0496.55001

[3] Chanillo S., Trèves F., On the lowest eigenvalue of the Hodge Laplacian, J. Differential Geom. 45 (2) (1997) 273-287. | MR 98i:58236 | Zbl 0874.58087

[4] Cheeger J., Fukaya K., Gromov M., Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5, 327-372. | MR 93a:53036 | Zbl 0758.53022

[5] Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. | MR 87k:53087 | Zbl 0606.53028

[6] Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bounded I, II, J. Differential Geom. 32 (1990) 269-298. | MR 92a:53066 | Zbl 0727.53043

[7] Colin De Verdière Y., Sur la multiplicité de la première valeur propre non nulle du Laplacien, Comment. Math. Helv. 61 (1986) 254-270. | MR 88b:58140 | Zbl 0607.53028

[8] Colbois B., Colin De Verdière Y., Sur la multiplicité d'une surface de Riemann, Comment. Math. Helv. 63 (1988) 194-208. | MR 90c:58182 | Zbl 0656.53043

[9] Colbois B., Courtois G., A note on the first non-zero eigenvalue of the Laplacian acting on p-forms, Manuscr. Math. 68 (1990) 143-160. | MR 91g:58290 | Zbl 0709.53031

[10] Courtois G., Spectrum of manifolds with holes, J. Funct. Anal. 134 (1) (1995) 194-221. | MR 97b:58142 | Zbl 0847.58076

[11] Dai X., Adiabatic limits, non-multiplicativity of signature and Leray spectral sequence, J. Amer. Math. Soc. 4 (2) (1991) 265-321. | MR 92f:58169 | Zbl 0736.58039

[12] Dodziuk J., Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85 (1982) 438-443. | MR 84k:58223 | Zbl 0502.58038

[13] Forman R., Spectral sequences and adiabatic limits, Comm. Math. Phys. 168 (1) (1995) 57-116. | MR 96g:58176 | Zbl 0827.58001

[14] Forman R., Hodge theory and spectral sequences, Topology 33 (3) (1994) 591-611. | MR 95j:58160 | Zbl 0816.55004

[15] Fukaya K., Collapsing Riemannian manifolds to ones of lower dimension, J. Differential Geom. 25 (1987) 139-156. | MR 88b:53050 | Zbl 0606.53027

[16] Fukaya K., Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math. 87 (1987) 517-547. | MR 88d:58125 | Zbl 0589.58034

[17] Gromov M., Paul Levy's isoperimetric inequality, Institut des Hautes Études Sci., Bures-sur-Yvette, France, 1980, Preprint.

[18] Gromov M., Curvature diameter and Betti numbers, Comment. Math. Helv. 56 (1981) 179-195. | MR 82k:53062 | Zbl 0467.53021

[19] Li P., On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Sup. 13 (1980) 451-469. | Numdam | MR 82h:58054 | Zbl 0466.53023

[20] Li P., Yau S.T., Eigenvalues of a compact Riemannian manifold, in : Proceedings Symposium on Pure Math., 1980, pp. 205-239. | MR 81i:58050 | Zbl 0441.58014

[21] Mazzeo R., Melrose R., The adiabatic limit, Hodge cohomology and Leray's spectral sequence for a fibration, J. Differential Geom. 31 (1990) 185-213. | MR 90m:58004 | Zbl 0702.58007

[22] Warner F.W., Foundations of Differential Manifolds and Lie Groups, Scott, Foresman and Company Glenview, London, 1971. | Zbl 0241.58001