Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 4, pp. 519-560.
@article{ASENS_2000_4_33_4_519_0,
     author = {McMullen, Curtis T.},
     title = {Polynomial invariants for fibered 3-manifolds and teichm\"uller geodesics for foliations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {519--560},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {4},
     year = {2000},
     doi = {10.1016/s0012-9593(00)00121-x},
     zbl = {01702167},
     mrnumber = {2002d:57015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)00121-x/}
}
TY  - JOUR
AU  - McMullen, Curtis T.
TI  - Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2000
DA  - 2000///
SP  - 519
EP  - 560
VL  - Ser. 4, 33
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(00)00121-x/
UR  - https://zbmath.org/?q=an%3A01702167
UR  - https://www.ams.org/mathscinet-getitem?mr=2002d:57015
UR  - https://doi.org/10.1016/s0012-9593(00)00121-x
DO  - 10.1016/s0012-9593(00)00121-x
LA  - en
ID  - ASENS_2000_4_33_4_519_0
ER  - 
%0 Journal Article
%A McMullen, Curtis T.
%T Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations
%J Annales scientifiques de l'École Normale Supérieure
%D 2000
%P 519-560
%V Ser. 4, 33
%N 4
%I Elsevier
%U https://doi.org/10.1016/s0012-9593(00)00121-x
%R 10.1016/s0012-9593(00)00121-x
%G en
%F ASENS_2000_4_33_4_519_0
McMullen, Curtis T. Polynomial invariants for fibered 3-manifolds and teichmüller geodesics for foliations. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 4, pp. 519-560. doi : 10.1016/s0012-9593(00)00121-x. http://www.numdam.org/articles/10.1016/s0012-9593(00)00121-x/

[1] Arnoux P., Yoccoz J.-C., Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981) 75-78. | MR | Zbl

[2] Atiyah M., Macdonald I., Commutative Algebra, Addison-Wesley, 1969. | MR

[3] Bauer M., An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361-370. | MR | Zbl

[4] Bers L., An extremal problem for quasiconformal maps and a theorem by Thurston, Acta Math. 141 (1978) 73-98. | MR | Zbl

[5] Bestvina M., Handel M., Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140. | MR | Zbl

[6] Birman J.S., Braids, Links and Mapping-Class Groups, Annals of Math. Studies, Vol. 82, Princeton University Press, 1974. | MR | Zbl

[7] Bonahon F., Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205-240. | Numdam | MR | Zbl

[8] Bonahon F., Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103-122. | MR | Zbl

[9] Brinkman P., An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, J. Exp. Math., to appear. | Zbl

[10] Burde G., Zieschang H., Knots, Walter de Gruyter & Co., 1985. | MR | Zbl

[11] Cantwell J., Conlon L., Isotopies of foliated 3-manifolds without holonomy, Adv. Math. 144 (1999) 13-49. | MR | Zbl

[12] Connes A., Noncommutative Geometry, Academic Press, 1994. | MR | Zbl

[13] Cooper D., Long D.D., Reid A.W., Finite foliations and similarity interval exchange maps, Topology 36 (1997) 209-227. | MR | Zbl

[14] Dunfield N., Alexander and Thurston norms of fibered 3-manifolds, Preprint, 1999.

[15] Fathi A., Démonstration d'un théorème de Penner sur la composition des twists de Dehn, Bull. Sci. Math. France 120 (1992) 467-484. | Numdam | MR | Zbl

[16] Fathi A., Laudenbach F., Poénaru V., Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979. | MR

[17] Fried D., Fibrations over S1 with pseudo-Anosov monodromy, in : Travaux de Thurston sur les Surfaces, Astérisque, Vol. 66-67, 1979, pp. 251-265. | Zbl

[18] Fried D., Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helvetici 57 (1982) 237-259. | MR | Zbl

[19] Fried D., The geometry of cross sections to flows, Topology 21 (1982) 353-371. | MR | Zbl

[20] Fried D., Growth rate of surface homeomorphisms and flow equivalence, Ergod. Theory Dynamical Syst. 5 (1985) 539-564. | MR | Zbl

[21] Gabai D., Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503. | MR | Zbl

[22] Gabai D., Foliations and genera of links, Topology 23 (1984) 381-394. | MR | Zbl

[23] Gantmacher F.R., The Theory of Matrices, Vol. II, Chelsea, New York, 1959.

[24] Harer J.L., Penner R.C., Combinatorics of Train Tracks, Annals of Math. Studies, Vol. 125, Princeton University Press, 1992. | MR | Zbl

[25] Hatcher A., Oertel U., Affine lamination spaces for surfaces, Pacific J. Math. 154 (1992) 87-101. | MR | Zbl

[26] Hubbard J., Masur H., Quadratic differentials and foliations, Acta Math. 142 (1979) 221-274. | MR | Zbl

[27] Kronheimer P., Mrowka T., Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931-937. | MR | Zbl

[28] Lang S., Algebra, Addison-Wesley, 1984. | Zbl

[29] Laudenbach F., Blank S., Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979) 103-177. | MR | Zbl

[30] Lind D., Marcus B., An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. | MR | Zbl

[31] Long D., Oertel U., Hyperbolic surface bundles over the circle, in : Progress in Knot Theory and Related Topics, Travaux en Cours, Vol. 56, Hermann, 1997, pp. 121-142. | MR | Zbl

[32] Matsumoto S., Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763-778. | MR | Zbl

[33] Mcmullen C., The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Preprint, 1998.

[34] Mosher L., Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds, J. Differential Geom. 34 (1991) 1-36. | MR | Zbl

[35] Ngô V.Q., Roussarie R., Sur l'isotopie des formes fermées en dimension 3, Invent. Math. 64 (1981) 69-87. | MR | Zbl

[36] Northcott D.G., Finite Free Resolutions, Cambridge University Press, 1976. | MR | Zbl

[37] Oertel U., Homology branched surfaces : Thurston's norm on H2(M³), in : Epstein D.B. (Ed.), Low-Dimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253-272. | MR | Zbl

[38] Oertel U., Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303-328. | MR | Zbl

[39] Penner R., A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179-198. | MR | Zbl

[40] Penner R., Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443-450. | MR | Zbl

[41] Rolfsen D., Knots and Links, Publish or Perish, Inc., 1976. | MR | Zbl

[42] Thurston W.P., Geometry and Topology of Three-Manifolds, Lecture Notes, Princeton University, 1979.

[43] Thurston W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986) 99-130. | MR | Zbl

[44] Thurston W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417-432. | MR | Zbl

[45] Thurston W.P., Three-manifolds, foliations and circles, I, Preprint, 1997.

[46] Yoccoz J.-C., Petits Diviseurs en Dimension 1, Astérisque, Vol. 231, 1995. | MR | Zbl

[47] Zhirov A. Yu., On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197-198. | MR | Zbl

Cited by Sources: