@article{ASENS_1999_4_32_3_347_0, author = {Sj\"ostrand, J. and Wang, W.-M.}, title = {Supersymmetric measures and maximum principles in the complex domain. {Exponential} decay of {Green's} functions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {347--414}, publisher = {Elsevier}, volume = {Ser. 4, 32}, number = {3}, year = {1999}, doi = {10.1016/s0012-9593(99)80017-2}, mrnumber = {2000h:82050}, zbl = {0941.47033}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(99)80017-2/} }
TY - JOUR AU - Sjöstrand, J. AU - Wang, W.-M. TI - Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions JO - Annales scientifiques de l'École Normale Supérieure PY - 1999 SP - 347 EP - 414 VL - 32 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(99)80017-2/ DO - 10.1016/s0012-9593(99)80017-2 LA - en ID - ASENS_1999_4_32_3_347_0 ER -
%0 Journal Article %A Sjöstrand, J. %A Wang, W.-M. %T Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions %J Annales scientifiques de l'École Normale Supérieure %D 1999 %P 347-414 %V 32 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(99)80017-2/ %R 10.1016/s0012-9593(99)80017-2 %G en %F ASENS_1999_4_32_3_347_0
Sjöstrand, J.; Wang, W.-M. Supersymmetric measures and maximum principles in the complex domain. Exponential decay of Green's functions. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 32 (1999) no. 3, pp. 347-414. doi : 10.1016/s0012-9593(99)80017-2. http://www.numdam.org/articles/10.1016/s0012-9593(99)80017-2/
[A] Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
,[AM] Localization at large disorder and at extreme energies : an elementary derivation, Commun. Math. Phys. 157, 245 (1993). | MR | Zbl
and ,[Be] The method of second quantization, New York : Academic press, 1966. | MR | Zbl
,[BCKP] Smoothness of the density of states in the Anderson model at high disorder, Commun. Math. Phys. 114 439-461, (1988). | MR | Zbl
, , , and ,[CFS] Analyticity of the density of states and replica method for random Schrödinger operators on a lattice, J. Stat. Phys. 34 571-596, (1984). | Zbl
, , and ,[DK] A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124, 285-299 (1989). | MR | Zbl
and ,[Ec] Green's functions in quantum physics, Springer Series in Solid State Sciences 7, 1979. | MR
,[FMSS] Constructive proof of localization in Anderson tight binding model, Commun. Math. Phys. 101, 21-46 (1985). | MR | Zbl
, , and ,[FS] Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88, 151-184 (1983). | MR | Zbl
and ,[HS] On the correlation for Kac-like models in the convex case, J. of Stat. Phys. (1994). | Zbl
and ,[K] The supersymmetric replica trick and smoothness of the density of states for the random Schrödinger operators, Proceedings of Symposium in Pure Mathematics, 51, 1990. | MR | Zbl
,[KS] Smoothness of the density of states in the Anderson model on a one dimensional strip, Annals of Physics 183, 352-398 (1988). | MR | Zbl
and ,[S1] Ferromagnetic integrals, correlations and maximum principle, Ann. Inst. Fourier 44, 601-628 (1994). | Numdam | MR | Zbl
,[S2] Correlation asymptotics and Witten Laplacians, Algebra and Analysis 8 (1996). | Zbl
,[SW] Exponential decay of averaged Green functions for the random Schrödinger operators, a direct approach, Ann. Scient. Éc. Norm. Sup., 32 (1999). | Numdam | Zbl
and ,[Sp] The Schrödinger equation with a random potential-a mathematical review, Les Houches XLIII, K. Osterwalder, R. Stora (eds.) (1984). | Zbl
,[V] Geometric integration theory on supermanifolds, Mathematical Physics Review, USSR Academy of Sciences, Moscow, 1993.
,[W1] Asymptotic expansion for the density of states of the magnetic Schrödinger operator with a random potential, Commun. Math. Phys. 172, 401-425 (1995). | Zbl
,[W2] Supersymmetry and density of states of the magnetic Schrödinger operator with a random potential revisited, (submitted).
,Cited by Sources: