The Hodge de Rham theory of relative Malcev completion
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 31 (1998) no. 1, p. 47-92
@article{ASENS_1998_4_31_1_47_0,
     author = {Hain, Richard M.},
     title = {The Hodge de Rham theory of relative Malcev completion},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 31},
     number = {1},
     year = {1998},
     pages = {47-92},
     doi = {10.1016/s0012-9593(98)80018-9},
     zbl = {0911.14008},
     mrnumber = {99f:14009},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_1998_4_31_1_47_0}
}
Hain, Richard M. The Hodge de Rham theory of relative Malcev completion. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 31 (1998) no. 1, pp. 47-92. doi : 10.1016/s0012-9593(98)80018-9. http://www.numdam.org/item/ASENS_1998_4_31_1_47_0/

[1] P. Cartier, Dualité de Tanaka des groupes et des algèbres de Lie, (C. R. Acad. Sci. Paris, t. 242, 1956, pp. 322-325). | MR 17,762f | Zbl 0070.02506

[2] K.-T. Chen, Reduced Bar constructions on de Rham complexes, in : A. Heller, A. Tierney (eds), (Algebra, Topology, and Category Theory, Academic Press, 1977, pp. 19-32). | MR 54 #1272 | Zbl 0341.57034

[3] K.-T. Chen, Iterated path integrals, (Bull. Amer. Math. Soc., Vol. 83, 1977, pp. 831-879). | MR 56 #13210 | Zbl 0389.58001

[4] P. Deligne, Variation sur un thème de Chen et Sullivan, Notes, April, 1989.

[5] W. Fulton and J. Harris, Representation Theory, GTM 129, Springer-Verlag, 1991. | MR 93a:20069 | Zbl 0744.22001

[6] R. Hain, The indecomposables of the bar construction, (Proc. Amer. Math. Soc., Vol. 98, 1986, pp. 312-316). | MR 87i:55047 | Zbl 0613.55007

[7] R. Hain, The geometry of the mixed Hodge structure on the fundamental group, in Algebraic Geometry, Bowdoin 1985, (Proc. Symp. Pure Math., Vol. 46, 1987, pp. 247-281). | MR 89g:14010 | Zbl 0654.14006

[8] R. Hain, The de Rham homotopy theory of complex algebraic varieties I, (K-Theory Vol. 1, 1987, pp. 271-324). | MR 88h:14029 | Zbl 0637.55006

[9] R. Hain, Completions of mapping class groups and the cycle C - C-, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces, C.-F. Bödigheimer and R. Hain, editors, (Contemp. Math., Vol. 150, 1993, pp. 75-105). | MR 95e:14018 | Zbl 0831.57005

[10] R. Hain, Torelli groups and Geometry of Moduli Spaces of Curves, in Current Topics in Complex Algebraic Geometry (C. H. Clemens and J. Kollar, eds.) (MSRI publications no. 28, Cambridge University Press, 1995). | MR 97d:14036 | Zbl 0868.14006

[11] R. Hain, Infinitesimal presentations of the Torelli groups, (J. Amer. Math. Soc., Vol. 10, 1997, pp. 597-651). | MR 97k:14024 | Zbl 0915.57001

[12] R. Hain and S. Zucker, Unipotent variations of mixed Hodge structure, (Invent. Math., Vol. 88, 1987, pp. 83-124). | MR 88i:32035 | Zbl 0622.14007

[13] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, (Ann. Inst. Fourier, Grenoble, Vol. 37, 1987, pp. 139-160). | Numdam | MR 89h:17030 | Zbl 0634.58040

[14] S. Mac Lane, (Homology, Springer-Verlag, 1963).

[15] J. Morgan, The algebraic topology of smooth algebraic varieties, (Publ. Math. IHES, 48, 1978, 137-204 ; correction, Publ. Math. IHES, Vol. 64, 1986, pp. 185). | Numdam | Zbl 0401.14003

[16] M. Saito, Mixed Hodge modules and admissible variations, (C. R. Acad. Sci. Paris, t. 309, 1989, Série I, pp. 351-356). | MR 91i:32029 | Zbl 0765.14006

[17] D. Sullivan, Infinitesimal computations in topology, (Publ. Math. IHES, Vol. 47, 1977, pp. 269-331). | Numdam | MR 58 #31119 | Zbl 0374.57002