Quantum groups in higher genus and Drinfeld’s new realizations method (𝔰𝔩 2 case)
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 30 (1997) no. 6, p. 821-846
@article{ASENS_1997_4_30_6_821_0,
     author = {Enriquez, Benjamin and Rubtsov, V. N.},
     title = {Quantum groups in higher genus and Drinfeld's new realizations method (${\mathfrak {s}\mathfrak {l}}\_2$ case)},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 30},
     number = {6},
     year = {1997},
     pages = {821-846},
     doi = {10.1016/s0012-9593(97)89940-5},
     zbl = {0897.17012},
     mrnumber = {99b:17011},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_1997_4_30_6_821_0}
}
Enriquez, B.; Rubtsov, V. N. Quantum groups in higher genus and Drinfeld’s new realizations method (${\mathfrak {s}\mathfrak {l}}_2$ case). Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 30 (1997) no. 6, pp. 821-846. doi : 10.1016/s0012-9593(97)89940-5. http://www.numdam.org/item/ASENS_1997_4_30_6_821_0/

[1] J. Beck, Braid group action and quantum affine algebras (Commun. Math. Phys., Vol. 165, 1994, pp. 555-68). | MR 95i:17011 | Zbl 0807.17013

[2] V. Chari and A. Pressley, Quantum affine algebras (Commun. Math. Phys., Vol. 142, 1991, pp. 261-83). | MR 93d:17017 | Zbl 0739.17004

[3] J. Ding and I. B. Frenkel, Isomorphism of two realizations of quantum affine algebras Uq(ĝln) (Commun. Math. Phys., Vol. 156, 1993, pp. 277-300). | MR 94i:17020 | Zbl 0786.17008

[4] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras (Sov. Math. Dokl., Vol. 36, 1988). | MR 88j:17020 | Zbl 0667.16004

[5] V. G. Drinfeld, Quasi-Hopf algebras (Leningrand Math. J., Vol. 1:6, 1990, pp. 1419-57). | MR 91b:17016 | Zbl 0718.16033

[6] B. Enriquez and G. Felder, in preparation.

[7] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras, I (Selecta Math. 2 (1996), No. 1, pp. 1-41), q-alg/9506005. | MR 97f:17014 | Zbl 0863.17008

[8] B. L. Feigin and E. V. Frenkel, Quantum W-algebras and elliptic algebras (Commun. Math. Phys., Vol. 178, 1996, pp. 653-678), q-alg/9508009. | MR 98a:81062 | Zbl 0871.17007

[9] I. B. Frenkel and N. Jing, Vertex representations of quantum affine algebras (Proc. Natl. Acad. Sci. USA, Vol. 85, 1988, pp. 9373-7). | MR 90e:17028 | Zbl 0662.17006

[10] S. M. Khoroshkin and V. N. Tolstoy, On Drinfeld's realization of quantum affine algebras (J. Geom. Phys., Vol. 11, 1993, pp. 445-52). | MR 94j:16068 | Zbl 0784.17022

[11] N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum current groups (Lett. Math. Phys., Vol. 19, 1990, pp. 133-42). | MR 91k:17013 | Zbl 0692.22011

[12] A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable systems II, ch. 11, (Encycl. Sov. Math., Vol. 16, “Dynamical systems, 7”, Springer-Verlag, 1993, pp. 188-225).

[13] M. A. Semenov-Tian-Shansky, Poisson-Lie groups, quantum duality principle, and the quantum double (Theor. Math. Phys., Vol. 93, 1992, pp. 1292-307). | MR 94e:58007 | Zbl 0834.22019

[14] J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959. | MR 21 #1973 | Zbl 0097.35604

[15] E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation (Funct. An. Appl., Vol. 16, 1982, pp. 263-70). | MR 84c:82004 | Zbl 0513.58028

[16] D. B. Uglov, The quantum bialgebra associated with the eight-vertex R-matrix (Lett. Math. Phys., Vol. 28, 1993, pp. 139-42). | MR 94e:82040 | Zbl 0774.17024