The kernel of an homomorphism of Harish-Chandra
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 3, p. 385-397
@article{ASENS_1996_4_29_3_385_0,
     author = {Levasseur, Thierry and Stafford, J. Toby},
     title = {The kernel of an homomorphism of Harish-Chandra},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 29},
     number = {3},
     year = {1996},
     pages = {385-397},
     doi = {10.24033/asens.1743},
     zbl = {0859.22010},
     mrnumber = {97b:22019},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_1996_4_29_3_385_0}
}
Levasseur, T.; Stafford, J. T. The kernel of an homomorphism of Harish-Chandra. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 3, pp. 385-397. doi : 10.24033/asens.1743. http://www.numdam.org/item/ASENS_1996_4_29_3_385_0/

[1] J.-E. Björk, Rings of Differential Operators, North Holland, Amsterdam, 1979. | Zbl 0499.13009

[2] A. Borel et al., Algebraic D-modules, Academic Press, Boston, 1987. | MR 89g:32014 | Zbl 0642.32001

[3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956. | MR 17,1040e | Zbl 0075.24305

[4] J. Dixmier, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simple (J. Reine Angew. Math., Vol. 309, 1979, pp. 183-190). | MR 80i:17011 | Zbl 0409.22009

[5] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989.

[6] Harish-Chandra, Invariant distributions on Lie algebras (Amer. J. Math., Vol. 86, 1964, pp. 271-309). | MR 28 #5144 | Zbl 0131.33302

[7] Harish-Chandra, Invariant differential operators and distributions on a semi-simple Lie algebra (Amer. J. Math., Vol. 86, 1964, pp. 534-564). | MR 31 #4862a | Zbl 0161.33804

[8] Harish-Chandra, Invariant eigendistributions on a semi-simple Lie algebra (Inst. Hautes Etudes Sci. Publ. Math., Vol. 27, 1965, pp. 5-54). | Numdam | MR 31 #4862c | Zbl 0199.46401

[9] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1979.

[10] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). | MR 87i:22041 | Zbl 0538.22013

[11] A. Joseph, A generalization of Quillen's Lemma and its applications to the Weyl algebras (Israel J. Math., Vol. 28, 1977, pp. 177-192). | MR 58 #28097 | Zbl 0366.17006

[12] M. Kashiwara, The Invariant Holonomic System on a Semisimple Lie Group (in “Algebraic Analysis” dedicated to M. Sato, Vol. 1, 1988, pp. 277-286, Academic Press). | MR 90k:22021 | Zbl 0704.22008

[13] B. Kostant, Lie group representations on polynomial rings (Amer. J. Math., Vol. 85, 1963, pp. 327-404). | MR 28 #1252 | Zbl 0124.26802

[14] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of Harish-Chandra (J. Amer. Math. Soc., Vol. 8, 1995, pp. 365-372). | MR 95g:22029 | Zbl 0837.22011

[15] J. C. Mcconnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. | MR 89j:16023 | Zbl 0644.16008

[16] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings (Lecture Notes in Mathematics, Vol. 818, Springer-Verlag, Berlin/New York, 1980). | MR 81j:16041 | Zbl 0449.16001

[17] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups (Compositio Math., Vol. 38, 1979, pp. 311-322). | Numdam | MR 80c:17009 | Zbl 0409.17006

[18] G. W. Schwarz, Lifting differential operators from orbit spaces (Ann. Sci. Ecole Norm. Sup., Vol. 28, 1995, pp. 253-306). | Numdam | MR 96f:14061 | Zbl 0836.14032

[19] G. W. Schwarz, Invariant differential operators (Proceedings of the 1994 International Congress of Mathematics, to appear). | Zbl 0857.13025

[20] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Part I (Lecture Notes in Mathematics Vol. 576, Springer-Verlag, Berlin/New York, 1977). | MR 57 #12789 | Zbl 0354.43001

[21] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations (J. Amer. Math. Soc., Vol. 6, 1993, pp. 779-816). | MR 94a:17014 | Zbl 0804.22004