Wronski algebra systems on families of singular curves
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, p. 107-134
@article{ASENS_1996_4_29_1_107_0,
     author = {Esteves, Eduardo},
     title = {Wronski algebra systems on families of singular curves},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 29},
     number = {1},
     year = {1996},
     pages = {107-134},
     doi = {10.24033/asens.1736},
     zbl = {0872.14025},
     mrnumber = {96m:14041a},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_1996_4_29_1_107_0}
}
Esteves, E. Wronski algebra systems on families of singular curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, pp. 107-134. doi : 10.24033/asens.1736. http://www.numdam.org/item/ASENS_1996_4_29_1_107_0/

[1] D. Buchsbaum and D. Eisenbud, What makes a complex exact ? (J. Algebra, Vol. 25, 1973, pp. 259-268). | MR 47 #3369 | Zbl 0264.13007

[2] D. Eisenbud and J. Harris, Limit linear series : basic theory (Inventiones Math., Vol. 85, 1986, pp. 337-371). | MR 87k:14024 | Zbl 0598.14003

[3] E. Esteves, The presentation functor and Weierstrass theory for families of local complete intersection curves (M.I.T. Ph. D. Thesis, 1994).

[4] A. Garcia and R. Lax, Weierstrass points on Gorenstein curves in arbitrary characteristic (Preprint).

[5] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique (Publ. Math. I.H.E.S., Vol. 24, 28, 32, 1965-1967). | Numdam

[6] S. Kleiman, Relative duality for quasi-coherent sheaves (Compositio Mathematica, Vol. 41, 1980, pp. 39-60). | Numdam | MR 81m:14017 | Zbl 0403.14003

[7] D. Laksov, Weierstrass points on curves (Astérisque, Vol. 87, 1981, pp. 221-247). | MR 83e:14023 | Zbl 0489.14007

[8] D. Laksov, Wronskians and Plücker formulas for linear systems on curves (Ann. Sci. École Norm. Sup., Vol. 17, 1984, pp. 45-66). | Numdam | MR 85k:14016 | Zbl 0555.14008

[9] D. Laksov and A. Thorup, The Brill-Segre formula for families of curves (Contemporary Mathematics, Vol. 123, 1991, pp. 131-148). | MR 92k:14029 | Zbl 0763.14013

[10] D. Laksov and A. Thorup, Weierstrass points and gap sequences for families of curves (To appear in Ark. Math.). | Zbl 0839.14020

[11] S. Lang, Introduction to Arakelov theory (Springer-Verlag, 1988). | MR 89m:11059 | Zbl 0667.14001

[12] R. Lax, On the distribution of Weierstrass points on singular curves (Israel J. Math., Vol. 57, 1987, pp. 107-115). | MR 88c:14025 | Zbl 0628.14026

[13] R. Lax, Weierstrass weights and degenerations (Proc. Amer. Math. Soc., Vol. 101, 1987, pp. 8-10). | MR 88e:14039 | Zbl 0634.14020

[14] H. Matsumura, Commutative ring theory (Cambridge studies in advanced mathematics, Vol. 8, 1986). | MR 88h:13001 | Zbl 0603.13001

[15] B. Matzat, Ein Vortrag über Weierstrasspunkte (Karlsruhe, 1975).

[16] D. G. Northcott, Some remarks on the theory of ideals defined by matrices (Q. Jl. Math. Oxford, (2), Vol. 14, 1963, pp. 193-204). | MR 27 #1467 | Zbl 0116.02504

[17] F. K. Schmidt, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern (Math. Z., Vol. 45, 1939, pp. 62-74). | JFM 65.0115.02 | Zbl 0020.10201

[18] F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen II (Math. Z., Vol. 45, 1939, pp. 75-96). | JFM 65.0116.01 | Zbl 0020.10202

[19] J.-P. Serre, Groupes algébriques et corps de classes (Hermann, Paris, 1959). | MR 21 #1973 | Zbl 0097.35604

[20] C. Widland, On Weierstrass points of Gorenstein curves (Louisiana State University Ph. D. Thesis, 1984).