@article{ASENS_1978_4_11_3_407_0, author = {Zimmer, Robert J.}, title = {Induced and amenable ergodic actions of {Lie} groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {407--428}, publisher = {Elsevier}, volume = {Ser. 4, 11}, number = {3}, year = {1978}, doi = {10.24033/asens.1351}, mrnumber = {81b:22013}, zbl = {0401.22009}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1351/} }
TY - JOUR AU - Zimmer, Robert J. TI - Induced and amenable ergodic actions of Lie groups JO - Annales scientifiques de l'École Normale Supérieure PY - 1978 SP - 407 EP - 428 VL - 11 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1351/ DO - 10.24033/asens.1351 LA - en ID - ASENS_1978_4_11_3_407_0 ER -
%0 Journal Article %A Zimmer, Robert J. %T Induced and amenable ergodic actions of Lie groups %J Annales scientifiques de l'École Normale Supérieure %D 1978 %P 407-428 %V 11 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1351/ %R 10.24033/asens.1351 %G en %F ASENS_1978_4_11_3_407_0
Zimmer, Robert J. Induced and amenable ergodic actions of Lie groups. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 11 (1978) no. 3, pp. 407-428. doi : 10.24033/asens.1351. http://www.numdam.org/articles/10.24033/asens.1351/
[1] Representation of Ergodic Flows (Annals of Math., Vol. 42, 1941, pp. 723-739). | JFM | MR | Zbl
,[2] Linear Algebraic Groups, Benjamin, New York, 1969. | MR | Zbl
,[3] Représentations induites holomorphes des groupes resoluble algébriques (Bull. Soc. Math. France) Vol. 94, 1966, pp. 181-206). | Numdam | MR | Zbl
,[4] Transformation groups and C*-Algebras (Annals of Math., Vol. 81, 1965, pp. 38-55). | MR | Zbl
,[5] Ergodic Equivalence Relations, Cohomology, and von Neumann Algebras (Trans. Amer. Math. Soc., Vol. 234, 1977, pp. 289-360). | MR | Zbl
and ,[6] Orbit Structure and Countable Sections for Actions of Continuous Groups. (Advances in Math., Vol. 28, 1978, pp. 186-230). | MR | Zbl
, , and ,[7] A Poisson Formula for Semi-Simple Lie Groups (Annals of Math., Vol. 77, 1963, pp. 335-383). | MR | Zbl
,[8] Boundary Theory and Stochastic Processes on Homogeneous Spaces, in Harmonic Analysis on Homogeneous Spaces (Symposia in Pure Mathematics, Williamstown, Mass., 1972). | Zbl
,[9] Croissance polynomials et périodes des fonctions harmoniques (Bull. Soc. Math. France, Vol. 101, 1973, pp. 333-379). | Numdam | MR | Zbl
,[10] Induced Representations of Locally Compact Groups, I (Annals of Math., Vol. 55, 1952, pp. 101-139). | MR | Zbl
,[11] Point Realizations of Transformation Groups, (Illinois J. Math., Vol. 6, 1962, pp. 327-335). | MR | Zbl
,[12] Ergodic Theory and Virtual Groups (Math. Ann., Vol. 166, 1966, pp. 187-207). | MR | Zbl
,[13] Ergodic Theory and its Significance for Statistical Mechanics and Probability Theory (Advances in Math., Vol. 12, 1974, pp. 178-268). | MR | Zbl
,[14] Ergodicity of Flows on Homogeneous Spaces (Amer. J. Math., Vol. 88, 1966, pp. 154-178). | MR | Zbl
,[15] Virtual Groups and Group Actions (Advances in Math., Vol. 6, 1971, pp. 253-322). | MR | Zbl
,[16] The Rohlin Theorem and Hyperfiniteness for Actions of Continuous Groups (to appear).
,[17] Geometry of Quantum Theory, Vol. II, van Nostrand, Princeton, N. J., 1970. | MR | Zbl
,[18] Extensions of Ergodic Group Actions (Illinois J. Math., Vol. 20, 1976, pp. 373-409). | MR | Zbl
,[19] Amenable Ergodic Actions, Hyperfinite Factors, and Poincaré Flows (Bull. Amer. Math. Soc., Vol. 83, 1977, pp. 1078-1080). | MR | Zbl
,[20] Amenable Ergodic Group Actions and an Application to Poisson Boundaries of Random Walks (J. Funct. Anal., Vol. 27, 1978, pp. 350-372). | MR | Zbl
,[21] On the von Neumann Algebra of an Ergodic Group Action (Proc. Amer. Math. Soc., Vol. 66, 1977, pp. 289-293). | MR | Zbl
,[22] Hyperfinite Factors and Amenable Ergodic Actions (Invent. Math., Vol. 41, 1977, pp. 23-31). | MR | Zbl
,[23] Amenable Pairs of Groups and Ergodic Actions and the Associated von Neumann Algebras [Trans. Amer. Math. Soc. (to appear)]. | Zbl
,[24] Orbit Spaces of Unitary Representations, Ergodic Theory, and Simple Lie Groups (Ann. of Math., Vol. 106, 1977, pp. 573-588). | MR | Zbl
,[25] The σ-Representations of Amenable Groupoids, preprint.
,Cited by Sources: