@article{ASENS_1975_4_8_3_295_0, author = {Ogus, Arthur}, title = {Cohomology of the infinitesimal site}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {295--318}, publisher = {Elsevier}, volume = {Ser. 4, 8}, number = {3}, year = {1975}, doi = {10.24033/asens.1289}, mrnumber = {54 #10271}, zbl = {0337.14018}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1289/} }
TY - JOUR AU - Ogus, Arthur TI - Cohomology of the infinitesimal site JO - Annales scientifiques de l'École Normale Supérieure PY - 1975 SP - 295 EP - 318 VL - 8 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1289/ DO - 10.24033/asens.1289 LA - en ID - ASENS_1975_4_8_3_295_0 ER -
Ogus, Arthur. Cohomology of the infinitesimal site. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 8 (1975) no. 3, pp. 295-318. doi : 10.24033/asens.1289. http://www.numdam.org/articles/10.24033/asens.1289/
[1] Cohomologie cristalline des schémas de caractéristique p > 0 (Lecture Notes in Math., No. 407, Springer Verlag, 1974). | MR | Zbl
,[2] Crystals and the de Rham Cohomology of Schemes (Dix exposés sur la cohomologie des schémas, Adv. Studies in Pure Math., vol. 3, p. 306-358, North-Holland Pub. Co.). | MR | Zbl
,[3] Eléments de Géométrie algébrique (Publ. Math. I.H.E.S., [EGA]). | Numdam
et ,[4] The Tame Fundamental Group of a Formal Neighborhood of a Divisor with Normal Crossings on a Scheme (Lecture Notes in Math., No. 208, Springer, 1971). | MR | Zbl
and ,[5] Ample Subvarieties of Algebraic Varieties (Lecture Notes in Math., No. 156, Springer, 1970). | MR | Zbl
,[6] Nilpotent Connections and the Monodromy Theorem: Applications of a Theorem of Turritin, (Publ. Math. I.H.E.S., vol. 39, 1970, p. 175-232). | Numdam | MR | Zbl
,[7] Frobenius and the Hodge Filtration (estimates) (Ann. of Math., vol. 98, 1973, p. 58-95). | MR | Zbl
,[8] Local Cohomological Dimension of Algebraic Varieties (Ann. of Math. vol. 98, 1973, p. 327-365). | MR | Zbl
,[9] On the Formal Neighborhood of a Subvariety of Projective Space (to appear). | Zbl
,Cited by Sources: