[Estimation de fonctions de densité spectrale de matrices de ]
We give a polynomial bound on the spectral density function of a matrix over the complex group ring of . It yields an explicit lower bound on the Novikov-Shubin invariant associated to this matrix showing in particular that the Novikov-Shubin invariant is larger than zero.
Nous donnons une estimation polynomiale pour la fonction de densité spectrale d’une matrice sur l’algèbre complexe du groupe . Ce résultat donne une borne inférieure explicite à l’invariant de Novikov-Shubin associé à la matrice, montrant en particulier que l’invariant de Novikov-Shubin est strictement positif.
Keywords: spectral density function, Novikov-Shubin invariants
Mots-clés : Invariants de Novikov-Shubin, fonction de densité spectrale
Lück, Wolfgang 1
@article{AMBP_2015__22_1_73_0,
author = {L\"uck, Wolfgang},
title = {Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {73--88},
year = {2015},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {22},
number = {1},
doi = {10.5802/ambp.346},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.346/}
}
TY - JOUR
AU - Lück, Wolfgang
TI - Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$
JO - Annales mathématiques Blaise Pascal
PY - 2015
SP - 73
EP - 88
VL - 22
IS - 1
PB - Annales mathématiques Blaise Pascal
UR - https://www.numdam.org/articles/10.5802/ambp.346/
DO - 10.5802/ambp.346
LA - en
ID - AMBP_2015__22_1_73_0
ER -
%0 Journal Article
%A Lück, Wolfgang
%T Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$
%J Annales mathématiques Blaise Pascal
%D 2015
%P 73-88
%V 22
%N 1
%I Annales mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.346/
%R 10.5802/ambp.346
%G en
%F AMBP_2015__22_1_73_0
Lück, Wolfgang. Estimates for spectral density functions of matrices over $\mathbb{C}[\mathbb{Z}^d]$. Annales mathématiques Blaise Pascal, Tome 22 (2015) no. 1, pp. 73-88. doi: 10.5802/ambp.346
[1] Group ring elements with large spectral density (2014) (http://arxiv.org/abs/1409.3212)
[2] Random Walks on Lamplighters via random Schrödinger operators (2013) (Preprint)
[3] A problem of Boyd concerning geometric means of polynomials, J. Number Theory, Volume 16 (1983) no. 3, pp. 356-362 | DOI | Zbl | MR
[4] Heat kernels on covering spaces and topological invariants, J. Differential Geom., Volume 35 (1992) no. 2, pp. 471-510 | Zbl | MR
[5] Delocalized -invariants, J. Funct. Anal., Volume 169 (1999) no. 1, pp. 1-31 | DOI | Zbl | MR
[6] -Topological invariants of -manifolds, Invent. Math., Volume 120 (1995) no. 1, pp. 15-60 | DOI | Zbl | MR
[7] -Invariants: Theory and Applications to Geometry and -Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 44, Springer-Verlag, Berlin, 2002, pp. xvi+595 | Zbl | MR
[8] Twisting -invariants with finite-dimensional representations (2015) (in preparation)
[9] Algebraic -theory of von Neumann algebras, K-Theory, Volume 7 (1993) no. 6, pp. 517-536 | DOI | Zbl | MR
[10] Morse inequalities and von Neumann -factors, Dokl. Akad. Nauk SSSR, Volume 289 (1986) no. 2, pp. 289-292 | Zbl | MR
[11] Morse inequalities and von Neumann invariants of non-simply connected manifolds, Uspekhi. Matem. Nauk, Volume 41 (1986) no. 5, pp. 222-223 (in Russian)
[12] Power series over the group ring of a free group and applications to Novikov-Shubin invariants, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 449-468 | Zbl | MR
Cité par Sources :





