Let be a Brownian motion valued in the complex projective space . Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of and of , and express them through Jacobi polynomials in the simplices of and respectively. More generally, the distribution of may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group yet computations become tedious. We also revisit the approach initiated in [13] and based on a partial differential equation (hereafter pde) satisfied by the Laplace transform of the density. When , we invert the Laplace transform and retrieve the expression already derived using spherical harmonics. For general , integrations by parts performed on the pde lead to a heat equation in the simplex of .
Mots clés : Brownian motion, complex projective space, Dirichlet distribution, Jacobi polynomials in the simplex
@article{AMBP_2014__21_2_1_0, author = {Demni, Nizar}, title = {Distributions of truncations of the heat kernel on the complex projective space}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {1--20}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.339}, mrnumber = {3322612}, language = {en}, url = {www.numdam.org/item/AMBP_2014__21_2_1_0/} }
Demni, Nizar. Distributions of truncations of the heat kernel on the complex projective space. Annales Mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 1-20. doi : 10.5802/ambp.339. http://www.numdam.org/item/AMBP_2014__21_2_1_0/
[1] Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Notice, Volume 13 (2013), pp. 3087-3131 | MR 3073001
[2] Special functions, Cambridge University Press, Cambridge, 1999 | MR 1688958 | Zbl 1075.33500
[3] Remarques sur les semi-groupes de Jacobi, Hommage à P. André Meyer et J. Neveu. Astérisque, Volume 236 (1996), pp. 23-39 | MR 1417973 | Zbl 0859.47026
[4] Noyau de diffusion sur les espaces homogènes compacts, Bull. Soc. Math. France, Volume 101 (1973), pp. 265-283 | Numdam | MR 358874 | Zbl 0281.35046
[5] Le spectre d’une variété Riemannienne, Lecture Notes in Mathematics, Springer-Verlag, 1971, pp. vii+251 pp | MR 282313 | Zbl 0223.53034
[6] Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2001 | MR 1827871 | Zbl 0964.33001
[7] Banach algebras for Jacobi series and positivity of a kernel, Ann. Math., Volume 95 (1972), pp. 261-280 | Article | MR 310536 | Zbl 0236.33013
[8] Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc., Volume 279 (1983), pp. 187-203 | Article | MR 704609 | Zbl 0518.43006
[9] The Semicircle Law, Free Random Variables and Entropy Volume 77, A. M. S., 2000, pp. x+376 pp | MR 1746976 | Zbl 0955.46037
[10] Classical diffusion processes and total positivity, J. Math. Anal. Appl., Volume 1 (1960), pp. 163-183 | Article | MR 121844 | Zbl 0101.11102
[11] The addition formula for Jacobi polynomials II. The Laplace type integral and the product formula, Report TW 133/72. Mathematisch Centrum, Amsterdam (1972) | Zbl 0247.33018
[12] The addition formula for Jacobi polynomials III. Completion of the proof, Report TW 135/72. Mathematisch Centrum, Amsterdam (1972) | Zbl 0247.33019
[13] Random pure quantum states via unitary Brownian motion, Electron. Commun. Probab, Volume 18 (2013), pp. 1-13 | Article | MR 3056064
[14] Fonctions spéciales et théorie de la représentation des groupes Volume 33, Monographies Universitaires de Mathématiques, Dunod, 1969 | Zbl 0172.18405
[15] A treatise on the theory of Bessel functions, Cambridge University Press, 1995 | MR 1349110 | Zbl 0849.33001