In this paper, following the -adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not -compacts, we study the class of integrable -adic functions with respect to Bernoulli measures of rank . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.
Keywords: integrable functions, Bernoulli measures of rank $1$, invertible measures
Maïga, Hamadoun 1
@article{AMBP_2010__17_2_341_0,
author = {Ma{\"\i}ga, Hamadoun},
title = {Integrable functions for the {Bernoulli} measures of rank $1$},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {341--356},
year = {2010},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {17},
number = {2},
doi = {10.5802/ambp.287},
zbl = {1207.26031},
mrnumber = {2778916},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.287/}
}
TY - JOUR AU - Maïga, Hamadoun TI - Integrable functions for the Bernoulli measures of rank $1$ JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 341 EP - 356 VL - 17 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.287/ DO - 10.5802/ambp.287 LA - en ID - AMBP_2010__17_2_341_0 ER -
%0 Journal Article %A Maïga, Hamadoun %T Integrable functions for the Bernoulli measures of rank $1$ %J Annales mathématiques Blaise Pascal %D 2010 %P 341-356 %V 17 %N 2 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.287/ %R 10.5802/ambp.287 %G en %F AMBP_2010__17_2_341_0
Maïga, Hamadoun. Integrable functions for the Bernoulli measures of rank $1$. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 341-356. doi: 10.5802/ambp.287
[1] Base de Mahler et autres, Séminaire d’Analyse, 1994–1995 (Aubière) (Sémin. Anal. Univ. Blaise Pascal (Clermont II)), Volume 10, Univ. Blaise Pascal (Clermont II), Clermont-Ferrand, 1997, pp. Exp. No. 16, 18 | Zbl | MR
[2] Cours d’analyse -adique (1999 - 2000) (Technical report http://math.univ-bpclermont.fr/ diarra)
[3] -adic Numbers, -adic Analysis and Zeta-Functions, Springer-Verlag, New York - Heidelberg - Berlin, 1977 | Zbl | MR
[4] Intégration non-archimédienne. I, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Volume 25 (1963), pp. 634-642 | Zbl | MR
[5] Intégration non-archimédienne. II, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Volume 25 (1963), pp. 643-653 | Zbl | MR
[6] Non-Archimedean Functional Analysis, M. Dekker, New York and Basel, 1978 | Zbl | MR
[7] Ultrametric calculus - An introduction to p-adic analysis, Cambridge University Press, Cambridge, 1984 | Zbl | MR
Cité par Sources :





