Etant donnés () des -modules non triviaux de dimensions respectives (avec ) et un -homomorphisme, nous montrons que l’hyperdéterminant de est nul sauf si les modules sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.
Let () be non-trivial -modules with dimensions (such that ) and an -homomorphism. We show that the hyperdeterminant of is null except if the modules are irreducibles and the homomorphism is the multiplication of homogeneous polynomials with two variables.
Mots-clés : Hyperdéterminant, fibrés de Steiner, $SL_{2}$ modules
Keywords: Hyperdeterminant, Steinerbundles, $SL_{2}$ modules
Vallès, Jean 1
@article{AMBP_2008__15_1_81_0,
author = {Vall\`es, Jean},
title = {Hyperd\'eterminant d{\textquoteright}un $SL_{2}$-homomorphisme},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {81--86},
year = {2008},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {15},
number = {1},
doi = {10.5802/ambp.240},
zbl = {1141.14030},
mrnumber = {2418014},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/ambp.240/}
}
TY - JOUR
AU - Vallès, Jean
TI - Hyperdéterminant d’un $SL_{2}$-homomorphisme
JO - Annales mathématiques Blaise Pascal
PY - 2008
SP - 81
EP - 86
VL - 15
IS - 1
PB - Annales mathématiques Blaise Pascal
UR - https://www.numdam.org/articles/10.5802/ambp.240/
DO - 10.5802/ambp.240
LA - fr
ID - AMBP_2008__15_1_81_0
ER -
Vallès, Jean. Hyperdéterminant d’un $SL_{2}$-homomorphisme. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 81-86. doi: 10.5802/ambp.240
[1] Unstable hyperplanes for Steiner bundles and multidimensional matrices, Advances in Geometry, Volume 1 (2001) no. 2, pp. 165-192 | DOI | Zbl | MR
[2] On the theory of linear transformations, Cambridge Math. J. (1845) no. 4, pp. 193-209
[3] Stabilizers for nondegenerate matrices of boundary format and Steiner bundles, Rev.Mat.Complut., Volume 17 (2004), pp. 459-469 | Zbl | MR
[4] Arrangement of hyperplanes and vector bundles on , Duke Math. J. (1993) no. 71, pp. 633-664 | DOI | Zbl | MR
[5] Discriminants, resultants, and multidimensional determinants, Mathematics : Theory & Applications, Birkhäuser, 1994 | Zbl | MR
[6] Vector bundles on the projective plane, Proc. London Math. Soc., Volume 11 (1961), pp. 623-640 | DOI | Zbl | MR
Cité par Sources :





