Convex hulls, Sticky particle dynamics and Pressure-less gas system
Annales Mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 57-80.

We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities ${u}_{0}$ with negative jumps. We show the existence of a stochastic process and a forward flow $\phi$ satisfying ${X}_{s+t}=\phi \left({X}_{s},t,{P}_{s},{u}_{s}\right)$ and $\mathrm{d}{X}_{t}=\mathrm{E}\left[{u}_{0}\left({X}_{0}\right)/{X}_{t}\right]\mathrm{d}t$, where ${P}_{s}=P{X}_{s}^{-1}$ is the law of ${X}_{s}$ and ${u}_{s}\left(x\right)=\mathrm{E}\left[{u}_{0}\left({X}_{0}\right)/{X}_{s}=x\right]$ is the velocity of particle $x$ at time $s\ge 0$. Results on the flow characterization and Lipschitz continuity are also given.

Moreover, the map $\left(x,t\right)↦M\left(x,t\right):=P\left({X}_{t}\le x\right)$ is the entropy solution of a scalar conservation law ${\partial }_{t}M+{\partial }_{x}\left(A\left(M\right)\right)=0$ where the flux $A$ represents the particles momentum, and $\left({P}_{t},\phantom{\rule{0.166667em}{0ex}}{u}_{t},\phantom{\rule{0.277778em}{0ex}}t>0\right)$ is a weak solution of the pressure-less gas system of equations of initial datum ${P}_{0},{u}_{0}$.

DOI : https://doi.org/10.5802/ambp.239
Classification : 52A10,  52A22,  60G44,  60H10,  60H30
Mots clés : Convex hull, sticky particles, forward flow, stochastic differential equation, scalar conservation law, pressure-less gas system, Hamilton-Jacobi equation
@article{AMBP_2008__15_1_57_0,
author = {Moutsinga, Octave},
title = {Convex hulls, Sticky particle dynamics and Pressure-less gas system},
journal = {Annales Math\'ematiques Blaise Pascal},
pages = {57--80},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {15},
number = {1},
year = {2008},
doi = {10.5802/ambp.239},
mrnumber = {2418013},
zbl = {1153.76062},
language = {en},
url = {www.numdam.org/item/AMBP_2008__15_1_57_0/}
}
Moutsinga, Octave. Convex hulls, Sticky particle dynamics and Pressure-less gas system. Annales Mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 57-80. doi : 10.5802/ambp.239. http://www.numdam.org/item/AMBP_2008__15_1_57_0/

 Brenier, Y.; Grenier, E. Sticky particles and scalar conservation laws, Siam. J. Numer. Anal., Volume 35 (1998), pp. 2317-2328 ((No 6)) | Article | MR 1655848 | Zbl 0924.35080

 Dafermos, C. M. Polygonal approximations of solutions of the initial value problem for a conservation law, Journal of Mathematical Analysis and Appl., Volume 38 (1972), pp. 33-41 | Article | MR 303068 | Zbl 0233.35014

 Dermoune, A. Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics, C. R. Acad. Sci. Paris, Volume tome 5 (1998), pp. 595-599 | MR 1649309 | Zbl 0920.60087

 Dermoune, A.; Moutsinga, O. Generalized variational principles, Séminaire de Probabilités XXXVI, Lect. Notes in Math., Volume 1801 (2003), pp. 183-193 | EuDML 114085 | Numdam | MR 1971585 | Zbl 1038.60045

 E, W.; Rykov, Yu. G.; Sinai, Ya. G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Com. Math. Phys., Volume 177 (1996), pp. 349-380 | Article | MR 1384139 | Zbl 0852.35097

 Moutsinga, O. Equations de gaz sans pression avec une distribution initiale de Radon (2002) (Technical report)

 Moutsinga, O. Probabilistic approch of sticky particles and pressure-less gas system (2003) (Ph. D. Thesis)

 Zeldovich, Ya. B. Gravitational instability; an approximation theory for large density perturbations, Astron. Astrophys, Volume 5 (1970), pp. 84-89