Homologie et modèle minimal des algèbres de Gerstenhaber
Annales Mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 95-126.

On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des 𝒢-algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade 𝒢 des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des 𝒢-algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin on explicite la structure d’algèbre de Poisson à homotopie près.

@article{AMBP_2004__11_1_95_0,
     author = {Ginot, Gr\'egory},
     title = {Homologie et mod\`ele minimal des alg\`ebres de Gerstenhaber},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {95--126},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {11},
     number = {1},
     year = {2004},
     doi = {10.5802/ambp.187},
     mrnumber = {2077240},
     zbl = {02207860},
     language = {fr},
     url = {www.numdam.org/item/AMBP_2004__11_1_95_0/}
}
Ginot, Grégory. Homologie et modèle minimal des algèbres de Gerstenhaber. Annales Mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 95-126. doi : 10.5802/ambp.187. http://www.numdam.org/item/AMBP_2004__11_1_95_0/

[1] Cohen, F.R. The homology of 𝒞 n+1 spaces, n0, The homology of iterated loop spaces, Springer-Verlag, 1976, pp. 207-351

[2] Deligne, P. Letter to Stasheff, Gerstenhaber, May, Schechtman, Drinfeld (May 17, 1993)

[3] Fresse, B. Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 9, pp. 1053-1058 | Article | MR 1647186 | Zbl 0922.17014

[4] Fresse, B. Théorie des opérades de Koszul et homologie des algèbres de Poisson (1998) (Prépublication)

[5] Gerstenhaber, M. The cohomology structure of an associative ring, Ann. of Math, Volume 78 (1963) no. 2, pp. 267-288 | Article | MR 161898 | Zbl 0131.27302

[6] Gerstenhaber, M.; Voronov, A. Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices, Volume 3 (1995), pp. 141-153 | Article | MR 1321701 | Zbl 0827.18004

[7] Getzler, E.; Jones, J.D.S. Operads, homotopy algebras and iterated loop spaces, 1994 (hep-th/9403055)

[8] Ginzburg, V.; Kapranov, M. Koszul duality for operads, Duke Math. J, Volume 76 (1994) no. 1, pp. 203-272 | Article | MR 1301191 | Zbl 0855.18006

[9] Hinich, V. Tamarkin’s proof of Kontsevich formality conjecture, Forum Math., Volume 15 (2003) no. 4, pp. 591-614 | Article | MR 1978336 | Zbl 01916218

[10] Kadeishvili, T. Measuring the noncommutativity of DG-algebras (prépublication)

[11] Kontsevich, M. Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | Article | MR 1718044 | Zbl 0945.18008

[12] Kontsevich, M.; Soibelman, Y. Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I, Volume 21, Kluwer Acad. Publ., Dordrecht, 2000 | MR 1805894 | Zbl 0972.18005

[13] Lada, T.; Stasheff, J. Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys, Volume 32 (1993) no. 7, pp. 1087-1103 | Article | MR 1235010 | Zbl 0824.17024

[14] Markl, M. Homotopy Algebras are Homotopy Algebras (math.AT/9907138)

[15] Markl, M. Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 2, pp. 307-323 | Article | Numdam | MR 1393517 | Zbl 0853.18005

[16] Markl, M. Models for operads, Comm. Algebra, Volume 24 (1996) no. 4, pp. 1471-1500 | Article | MR 1380606 | Zbl 0848.18003

[17] May, J.P. Operads, algebras and modules, Operads : Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Volume 202, Amer. Math. Soc., Providence, 1997 | MR 1436914 | Zbl 0879.18002

[18] Stasheff, J. Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc., Volume 108 (1963), p. 275-292, 293-312 | Article | MR 158400 | Zbl 0114.39402

[19] Tamarkin, D. Another proof of Kontsevich formality conjecture (math.QA/9803183)

[20] Tamarkin, D.; Tsygan, B. Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology, Volume 6 (2000) no. 2, pp. 85-100 | MR 1783778 | Zbl 0965.58010

[21] Voronov, A. Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II, Volume 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 307-331 | MR 1805923 | Zbl 0974.16005