Existence of solutions of degenerated unilateral problems with L 1 data
Annales Mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 47-66.

In this paper, we shall be concerned with the existence result of the Degenerated unilateral problem associated to the equation of the type Au+g(x,u,u)=f- div F, where A is a Leray-Lions operator and g is a Carathéodory function having natural growth with respect to |u| and satisfying the sign condition. The second term is such that, fL 1 (Ω) and FΠ i=1 N L p (Ω,w i 1-p ).

@article{AMBP_2004__11_1_47_0,
     author = {Aharouch, Lahsen and Akdim, Youssef},
     title = {Existence of solutions of degenerated unilateral problems with $L^1$ data},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {47--66},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {11},
     number = {1},
     year = {2004},
     doi = {10.5802/ambp.185},
     mrnumber = {2077238},
     zbl = {02207858},
     language = {en},
     url = {www.numdam.org/item/AMBP_2004__11_1_47_0/}
}
Aharouch, Lahsen; Akdim, Youssef. Existence of solutions of degenerated unilateral problems with $L^1$ data. Annales Mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 47-66. doi : 10.5802/ambp.185. http://www.numdam.org/item/AMBP_2004__11_1_47_0/

[1] Akdim, Y.; Azroul, E.; Benkirane, A. Existence of solutions for quasilinear degenerated elliptic equations, Electronic J. Diff. Eqns., Volume 2001 (2001) no. 71, pp. 1-19 | MR 1872050 | Zbl 0988.35065

[2] Akdim, Y.; Azroul, E.; Benkirane, A. Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems, Annale Mathématique Blaise Pascal, Volume 10 (2003), pp. 1-20 | Article | Numdam | MR 1990009 | Zbl 1050.35022

[3] Azroul, E.; Benkirane, A.; Filali, O. Strongly nonlinear degenerated unilateral problems with L 1 data, Electronic J. Diff. Eqns. (Conf. 09. 2002), pp. 46-64 | Zbl 1034.35050

[4] Bénilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vazquez, J. L. An L 1 -theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, Volume 22 (1995), pp. 240-273 | Numdam | MR 1354907

[5] Boccardo, L.; Gallouët, T. Non-linear Elliptic Equations with right hand side Measures, commun. In partial Differential Equations, Volume 17 (1992), pp. 641-655 | MR 1163440 | Zbl 0812.35043

[6] Boccardo, L.; Gallouët, T. Strongly non-linear Elliptic Equations having natural growth and L 1 data, Nonlinear Anal., Volume 19 (1992), pp. 573-578 | Article | MR 1183664 | Zbl 0795.35031

[7] Boccardo, L.; Gallouët, T.; Murat, F. A unified presentation of tow existence results for problems with natural growth, in : Progress in Partial Differential Equations : The Metz Surveys 2, M. Chipot (ed), Pitman Res. Notes Math. Ser. 296, Longman (1993), pp. 127-137 | MR 1248641 | Zbl 0806.35033

[8] Boccardo, L.; Murat, F.; Puel, J.-P. Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Math. Pura Appl., Volume 152 (1988), pp. 183-196 | Article | MR 980979 | Zbl 0687.35042

[9] Dalmaso, G.; Murat, F.; Orsina, L.; Prignet, A. Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup Pisa Cl. Sci, Volume 12 (1999) no. 4, pp. 741-808 | Numdam | MR 1760541 | Zbl 0958.35045

[10] Drabek, P.; Kufner, A.; Nicolosi, F. Nonlinear elliptic equations, singular and degenerate cases, University of West Bohemia, 1996

[11] Elmahi, A.; Meskine, D. Unilateral elleptic problems in L 1 with natural growth terms (To appear Nonlinear and convex analysis) | MR 2101516 | Zbl 1097.35062

[12] Porretta, A. Existence for elliptic equations in L 1 having lower order terms with natural growth, Portugal. Math., Volume 57 (2000), pp. 179-190 | MR 1759814 | Zbl 0963.35068