We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of -closed -forms in the complement of a compact convex set in .
@article{AMBP_2004__11_1_41_0, author = {Hatziafratis, Telemachos}, title = {On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {41--46}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {11}, number = {1}, year = {2004}, doi = {10.5802/ambp.184}, mrnumber = {2077237}, zbl = {1085.32002}, language = {en}, url = {http://www.numdam.org/item/AMBP_2004__11_1_41_0/} }
Hatziafratis, Telemachos. On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms. Annales Mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 41-46. doi : 10.5802/ambp.184. http://www.numdam.org/item/AMBP_2004__11_1_41_0/
[1] Weighted integral formulas, Several Complex Variables (Proc. Mittag-Leffler Inst., 1987-88) (1993), pp. 160-187 | MR 1207859 | Zbl 0786.32003
[2] Note on the Fourier-Laplace transform of -cohomology classes, Zeitschrift für Analysis und ihre Anwendungen, Volume 17 (1998), pp. 907-915 | MR 1669921 | Zbl 0924.43004