We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation , where w is a bounded measurable function.
@article{AIHPC_2015__32_5_925_0,
author = {Bigolin, F. and Caravenna, L. and Serra Cassano, F.},
title = {Intrinsic {Lipschitz} graphs in {Heisenberg} groups and continuous solutions of a balance equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {925--963},
year = {2015},
publisher = {Elsevier},
volume = {32},
number = {5},
doi = {10.1016/j.anihpc.2014.05.001},
mrnumber = {3400438},
zbl = {1331.35089},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/}
}
TY - JOUR AU - Bigolin, F. AU - Caravenna, L. AU - Serra Cassano, F. TI - Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 925 EP - 963 VL - 32 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/ DO - 10.1016/j.anihpc.2014.05.001 LA - en ID - AIHPC_2015__32_5_925_0 ER -
%0 Journal Article %A Bigolin, F. %A Caravenna, L. %A Serra Cassano, F. %T Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 925-963 %V 32 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/ %R 10.1016/j.anihpc.2014.05.001 %G en %F AIHPC_2015__32_5_925_0
Bigolin, F.; Caravenna, L.; Serra Cassano, F. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 925-963. doi: 10.1016/j.anihpc.2014.05.001
[1] G. Alberti, S. Bianchini, L. Caravenna, Eulerian Lagrangian and Broad continuous solutions to a balance law with non-convex flux, forthcoming. | MR
[2] , , , Reduction on characteristics for continuous solution of a scalar balance law, Hyperbolic Problems: Theory, Numerics, Applications (2014), http://aimsciences.org/books/am/AMVol8.html | Zbl
[3] , , , Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Oxford (2000) | MR | Zbl
[4] , , , Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 no. 2 (2006), 187 -232 | MR | Zbl
[5] , Intrinsic Regular Hypersurfaces and PDEs, the Case of the Heisenberg Group, LAP Lambert Academic Publishing (2010)
[6] , , Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), 69 -97 | MR | Zbl
[7] , , Distributional solutions of Burgers' equation and Intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), 561 -568 | MR | Zbl
[8] , , , , An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Prog. Math. vol. 259 , Birkhäuser (2007) | MR | Zbl
[9] , , Differentiating maps into and the geometry of BV functions, Ann. Math. (2) 171 no. 2 (2006), 1347 -1385 | MR | Zbl
[10] , , Implicit function theorem in Carnot–Carathéodory spaces, Commun. Contemp. Math. 8 no. 5 (2006), 657 -680 | MR | Zbl
[11] , , , , Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ. 49 (2014), 1279 -1308 | MR | Zbl
[12] , Measure Theory, Birkhäuser (1980) | MR
[13] , The flow associated to weakly differentiable vector fields, Publ. Sc. Norm. Super. vol. 12 , Birkhäuser (2009) | MR | Zbl
[14] , Lagrangian flows and the one dimensional Peano phenomenon for ODEs, J. Differ. Equ. 250 no. 7 (2011), 3135 -3149 | MR | Zbl
[15] , Continuous solutions for balance laws, Ric. Mat. 55 (2006), 79 -91 | MR | Zbl
[16] , , , Modern Geometry—Methods and Applications—Part III, Grad. Texts Math. vol. 124 , Springer-Verlag, New York (1990) | MR | Zbl
[17] , , , Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479 -531 | MR | Zbl
[18] , , , Regular hypersurfaces, intrinsic perimeter and Implicit Function Theorem in Carnot groups, Commun. Anal. Geom. 11 (2003), 909 -944 | MR | Zbl
[19] , , , Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), 152 -203 | MR | Zbl
[20] , , , Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. 21 (2011), 1044 -1084 | MR | Zbl
[21] , Carnot–Carathéodory spaces seen from within, , (ed.), Subriemannian Geometry, Prog. Math. vol. 144 , Birkhäuser Verlag, Basel (1996) | MR
[22] , Ordinary Differential Equations, Class. Appl. Math. vol. 38 , SIAM (2002) | MR | Zbl
[23] , Contributions à la théorie des ensembles boreliens et analytiques II and III, J. Fac. Sci., Hokkaido Univ. 8 (1939–1940), 79 -108 | MR
[24] , , Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Sc. Norm. Super. Pisa, Cl. Sci. III (2004), 871 -896 | MR | EuDML | Zbl | Numdam
[25] , A Tour of Sub-Riemannian Geometries, their Geodesics and Applications, AMS, Providence (2002) | MR
[26] , Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1 -60 | MR | Zbl
[27] , A Course on Borel Sets, Grad. Texts Math. vol. 180 , Springer (1998) | MR | Zbl
[28] , Submanifolds in Carnot Groups, Birkhäuser (2008) | MR | Zbl
Cité par Sources :





