Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 925-963.

We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation φ z+ t[φ 2 /2]=w, where w is a bounded measurable function.

DOI : 10.1016/j.anihpc.2014.05.001
Mots clés : Intrinsic Lipschitz graphs, Heisenberg groups, Lagrangian formulation, Scalar balance laws, Continuous solutions, Peano phenomenon
@article{AIHPC_2015__32_5_925_0,
     author = {Bigolin, F. and Caravenna, L. and Serra Cassano, F.},
     title = {Intrinsic {Lipschitz} graphs in {Heisenberg} groups and continuous solutions of a balance equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {925--963},
     publisher = {Elsevier},
     volume = {32},
     number = {5},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.05.001},
     mrnumber = {3400438},
     zbl = {1331.35089},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/}
}
TY  - JOUR
AU  - Bigolin, F.
AU  - Caravenna, L.
AU  - Serra Cassano, F.
TI  - Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 925
EP  - 963
VL  - 32
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/
DO  - 10.1016/j.anihpc.2014.05.001
LA  - en
ID  - AIHPC_2015__32_5_925_0
ER  - 
%0 Journal Article
%A Bigolin, F.
%A Caravenna, L.
%A Serra Cassano, F.
%T Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 925-963
%V 32
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/
%R 10.1016/j.anihpc.2014.05.001
%G en
%F AIHPC_2015__32_5_925_0
Bigolin, F.; Caravenna, L.; Serra Cassano, F. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 925-963. doi : 10.1016/j.anihpc.2014.05.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/

[1] G. Alberti, S. Bianchini, L. Caravenna, Eulerian Lagrangian and Broad continuous solutions to a balance law with non-convex flux, forthcoming. | MR

[2] G. Alberti, S. Bianchini, L. Caravenna, Reduction on characteristics for continuous solution of a scalar balance law, Hyperbolic Problems: Theory, Numerics, Applications (2014), http://aimsciences.org/books/am/AMVol8.html | Zbl

[3] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Oxford (2000) | MR | Zbl

[4] L. Ambrosio, F. Serra Cassano, D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 no. 2 (2006), 187 -232 | MR | Zbl

[5] F. Bigolin, Intrinsic Regular Hypersurfaces and PDEs, the Case of the Heisenberg Group, LAP Lambert Academic Publishing (2010)

[6] F. Bigolin, F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), 69 -97 | MR | Zbl

[7] F. Bigolin, F. Serra Cassano, Distributional solutions of Burgers' equation and Intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), 561 -568 | MR | Zbl

[8] L. Capogna, D. Danielli, S.D. Pauls, J.T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Prog. Math. vol. 259 , Birkhäuser (2007) | MR | Zbl

[9] J. Cheeger, B. Kleiner, Differentiating maps into L 1 and the geometry of BV functions, Ann. Math. (2) 171 no. 2 (2006), 1347 -1385 | MR | Zbl

[10] G. Citti, M. Manfredini, Implicit function theorem in Carnot–Carathéodory spaces, Commun. Contemp. Math. 8 no. 5 (2006), 657 -680 | MR | Zbl

[11] G. Citti, M. Manfredini, A. Pinamonti, F. Serra Cassano, Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ. 49 (2014), 1279 -1308 | MR | Zbl

[12] D.L. Cohn, Measure Theory, Birkhäuser (1980) | MR

[13] G. Crippa, The flow associated to weakly differentiable vector fields, Publ. Sc. Norm. Super. vol. 12 , Birkhäuser (2009) | MR | Zbl

[14] G. Crippa, Lagrangian flows and the one dimensional Peano phenomenon for ODEs, J. Differ. Equ. 250 no. 7 (2011), 3135 -3149 | MR | Zbl

[15] C.M. Dafermos, Continuous solutions for balance laws, Ric. Mat. 55 (2006), 79 -91 | MR | Zbl

[16] B. Dubrovin, Fomenko, Novikov, Modern Geometry—Methods and Applications—Part III, Grad. Texts Math. vol. 124 , Springer-Verlag, New York (1990) | MR | Zbl

[17] B. Franchi, R. Serapioni, F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479 -531 | MR | Zbl

[18] B. Franchi, R. Serapioni, F. Serra Cassano, Regular hypersurfaces, intrinsic perimeter and Implicit Function Theorem in Carnot groups, Commun. Anal. Geom. 11 (2003), 909 -944 | MR | Zbl

[19] B. Franchi, R. Serapioni, F. Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), 152 -203 | MR | Zbl

[20] B. Franchi, R. Serapioni, F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. 21 (2011), 1044 -1084 | MR | Zbl

[21] M. Gromov, Carnot–Carathéodory spaces seen from within, A. Bellaiche, J. Risler (ed.), Subriemannian Geometry, Prog. Math. vol. 144 , Birkhäuser Verlag, Basel (1996) | MR

[22] P. Hartman, Ordinary Differential Equations, Class. Appl. Math. vol. 38 , SIAM (2002) | MR | Zbl

[23] K. Kunugui, Contributions à la théorie des ensembles boreliens et analytiques II and III, J. Fac. Sci., Hokkaido Univ. 8 (1939–1940), 79 -108 | MR

[24] B. Kirchheim, F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Sc. Norm. Super. Pisa, Cl. Sci. III (2004), 871 -896 | EuDML | Numdam | MR | Zbl

[25] R. Montgomery, A Tour of Sub-Riemannian Geometries, their Geodesics and Applications, AMS, Providence (2002) | MR

[26] P. Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1 -60 | MR | Zbl

[27] S.M. Srivastava, A Course on Borel Sets, Grad. Texts Math. vol. 180 , Springer (1998) | MR | Zbl

[28] D. Vittone, Submanifolds in Carnot Groups, Birkhäuser (2008) | MR | Zbl

Cité par Sources :