We consider a small random perturbation of the energy functional
Keywords: Random functionals, Phase segregation in disordered materials, Fractional Laplacian
@article{AIHPC_2015__32_3_593_0,
author = {Dirr, Nicolas and Orlandi, Enza},
title = {Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {593--622},
year = {2015},
publisher = {Elsevier},
volume = {32},
number = {3},
doi = {10.1016/j.anihpc.2014.02.002},
zbl = {1320.35355},
mrnumber = {3353702},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.02.002/}
}
TY - JOUR
AU - Dirr, Nicolas
AU - Orlandi, Enza
TI - Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2015
SP - 593
EP - 622
VL - 32
IS - 3
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2014.02.002/
DO - 10.1016/j.anihpc.2014.02.002
LA - en
ID - AIHPC_2015__32_3_593_0
ER -
%0 Journal Article
%A Dirr, Nicolas
%A Orlandi, Enza
%T Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 593-622
%V 32
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2014.02.002/
%R 10.1016/j.anihpc.2014.02.002
%G en
%F AIHPC_2015__32_3_593_0
Dirr, Nicolas; Orlandi, Enza. Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 593-622. doi: 10.1016/j.anihpc.2014.02.002
[1] , , Rounding effects on quenched randomness on first-order phase transitions, Commun. Math. Phys. 130 (1990), 489 -528 | MR | Zbl
[2] , Statistical Mechanics of Disordered Systems. A Mathematical Perspective, Cambridge University Press (2012) | MR | Zbl
[3] , , Lévy flights in external force fields: from models to equations, Chem. Phys. 284 (2002), 409 -421
[4] , , , Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521 -573 | MR | Zbl
[5] , Anomalous jumping in a double-well potential, Phys. Rev. E 60 (1999), 172 -179
[6] , , Sharp-interface limit of a Ginzburg–Landau functional with a random external field, SIAM J. Math. Anal. 41 (2009), 781 -824 | MR | Zbl
[7] , , Unique minimizer for a random functional with double well potential in dimension 1 and 2, Commun. Math. Sci. 1 (2011), 331 -351 | Zbl | MR
[8] , , A variational model for dislocation in the line tension limit, Arch. Ration. Mech. Anal. 81 (2006), 535 -578 | MR | Zbl
[9] , , A singular perturbation result with a fractional norm, Variational Problem in Material Sciences, Prog. Nonlinear Differ. Equ. Appl. vol. 68 (2006), 111 -126 | MR | Zbl
[10] , Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ. 36 (2009), 173 -210 | MR
[11] , , Martingale Limit Theory and Its Application, Academic Press, New York (1980) | MR | Zbl
[12] , Equilibrium States in Ergodic Theory, London Math. Soc. Stud. Texts vol. 42 (1998) | MR | Zbl
[13] , , The random walk's guide to anomalous diffusion: a fractional dynamical approach, Phys. Rep. 339 (2000), 1 -77 | MR | Zbl
[14] , , , Local and global minimizers for a variational energy involving fractional norm, Ann. Mat. Pura Appl. 92 (2013), 673 -718 | MR | Zbl
[15] , , Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman & Hall, CRC, Boca Raton (2004) | MR | Zbl
[16] , , Γ-convergence for nonlocal phase transitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012), 479 -500 | MR | Zbl | Numdam
[17] , , Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl. 9 (2014), 1 -26 | MR | Zbl
[18] , , Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133 -154 | MR | Zbl
[19] , Regularity of the obstacle problem for a fractional power of the Laplacian operator, Commun. Pure Appl. Math. 60 (2007), 67 -112 | MR | Zbl
[20] , , , , Fractional diffusion and Lévy stable processes, Phys. Rev. E 55 (1997), 99 -106 | MR
Cité par Sources :





