In this note we show that weak solutions to the wave map problem in the energy-supercritical dimension 3 are not unique. On the one hand, we find weak solutions using the penalization method introduced by Shatah [12] and show that they satisfy a local energy inequality. On the other hand we build on a special harmonic map to construct a weak solution to the wave map problem, which violates this energy inequality.Finally we establish a local weak-strong uniqueness argument in the spirit of Struwe [15] which we employ to show that one may even have a failure of uniqueness for a Cauchy problem with a stationary solution. We thus obtain a result analogous to the one of Coron [2] for the case of the heat flow of harmonic maps.
Keywords: Wave maps, Weak solutions, Weak-strong uniqueness
@article{AIHPC_2015__32_3_519_0,
author = {Widmayer, Klaus},
title = {Non-uniqueness of weak solutions to the wave map problem},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {519--532},
year = {2015},
publisher = {Elsevier},
volume = {32},
number = {3},
doi = {10.1016/j.anihpc.2014.02.001},
mrnumber = {3353699},
zbl = {1320.35006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.02.001/}
}
TY - JOUR AU - Widmayer, Klaus TI - Non-uniqueness of weak solutions to the wave map problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 519 EP - 532 VL - 32 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2014.02.001/ DO - 10.1016/j.anihpc.2014.02.001 LA - en ID - AIHPC_2015__32_3_519_0 ER -
%0 Journal Article %A Widmayer, Klaus %T Non-uniqueness of weak solutions to the wave map problem %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 519-532 %V 32 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2014.02.001/ %R 10.1016/j.anihpc.2014.02.001 %G en %F AIHPC_2015__32_3_519_0
Widmayer, Klaus. Non-uniqueness of weak solutions to the wave map problem. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 519-532. doi: 10.1016/j.anihpc.2014.02.001
[1] , , , Formation of singularities for equivariant -dimensional wave maps into the 2-sphere, Nonlinearity 14 no. 5 (2001), 1041 -1053 | MR | Zbl
[2] , Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 no. 4 (1990), 335 -344 | MR | EuDML | Zbl | Numdam
[3] , , Wave maps and ill-posedness of their Cauchy problem, New Trends in the Theory of Hyperbolic Equations, Oper. Theory Adv. Appl. vol. 159 , Birkhäuser, Basel (2005), 1 -111 | MR | Zbl
[4] , On stable self-similar blowup for equivariant wave maps, Commun. Pure Appl. Math. 64 no. 8 (2011), 1095 -1147 | MR | Zbl
[5] , Global weak solutions of the wave map system to compact homogeneous spaces, Manuscr. Math. 91 no. 4 (1996), 525 -533 | MR | EuDML | Zbl
[6] , Besov spaces and self-similar solutions for the wave-map equation, Commun. Partial Differ. Equ. 33 no. 7–9 (2008), 1571 -1596 | MR | Zbl
[7] , On the existence of smooth self-similar blowup profiles for the wave map equation, Commun. Pure Appl. Math. 62 no. 5 (2009), 706 -728 | MR | Zbl
[8] , Harmonic Maps, Conservation Laws and Moving Frames, Camb. Tracts Math. vol. 150 , Cambridge University Press, Cambridge (2002) | MR | Zbl
[9] , , Smoothing estimates for null forms and applications, Duke Math. J. 81 no. 1 (1996), 99 -133 | MR | Zbl
[10] , , Remark on the optimal regularity for equations of wave maps type, Commun. Partial Differ. Equ. 22 no. 5–6 (1997), 901 -918 | MR | Zbl
[11] , , Unconditional well-posedness for wave maps, J. Hyperbolic Differ. Equ. 9 no. 2 (2012), 223 -237 | MR | Zbl
[12] , Weak solutions and development of singularities of the σ-model, Commun. Pure Appl. Math. 41 no. 4 (1988), 459 -469 | MR | Zbl
[13] , , Well-posedness in the energy space for semilinear wave equations with critical growth, Int. Math. Res. Not. 7 no. 303ff (1994) | MR | Zbl
[14] , , Geometric Wave Equations, Courant Lect. Notes Math. vol. 2 , New York University Courant Institute of Mathematical Sciences, New York (1998) | MR | Zbl
[15] , Uniqueness for critical nonlinear wave equations and wave maps via the energy inequality, Commun. Pure Appl. Math. 52 no. 9 (1999), 1179 -1188 | MR | Zbl
[16] , Global regularity of wave maps. II. Small energy in two dimensions, Commun. Math. Phys. 224 no. 2 (2001), 443 -544 | MR | Zbl
[17] , Rough solutions for the wave maps equation, Am. J. Math. 127 no. 2 (2005), 293 -377 | MR | Zbl
Cité par Sources :





