Dans ce papier nous considérons l'équation
In this paper we consider the equation
Classification : 35J20, 35J60, 35Q55
Mots clés : Variational methods, Solutions with infinitely many bumps, Schrödinger equation
@article{AIHPC_2015__32_1_23_0, author = {Cerami, Giovanna and Passaseo, Donato and Solimini, Sergio}, title = {Nonlinear scalar field equations: Existence of a positive solution with infinitely many bumps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {23--40}, publisher = {Elsevier}, volume = {32}, number = {1}, year = {2015}, doi = {10.1016/j.anihpc.2013.08.008}, zbl = {1311.35081}, mrnumber = {3303940}, language = {en}, url = {www.numdam.org/item/AIHPC_2015__32_1_23_0/} }
Cerami, Giovanna; Passaseo, Donato; Solimini, Sergio. Nonlinear scalar field equations: Existence of a positive solution with infinitely many bumps. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 1, pp. 23-40. doi : 10.1016/j.anihpc.2013.08.008. http://www.numdam.org/item/AIHPC_2015__32_1_23_0/
[1] On a min–max procedure for the existence of a positive solution for certain scalar field equations in , Rev. Mat. Iberoam. 6 (1990), 1 -15 | EuDML 39393 | MR 1086148 | Zbl 0731.35036
, ,[2] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997), 365 -413 | EuDML 78416 | Numdam | MR 1450954 | Zbl 0883.35045
, ,[3] Analyse fonctionelle. Theorie et applications, Collect. Math. Appl. Maîtrise , Masson, Paris (1983) | MR 697382
,[4] Some nonlinear elliptic problems in unbounded domains, Milan J. Math. 74 (2006), 47 -77 | MR 2278729 | Zbl 1121.35054
,[5] Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differ. Equ. 23 (2005), 139 -168 | MR 2138080 | Zbl 1078.35113
, , ,[6] Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients, Commun. Pure Appl. Math. 66 (2013), 372 -413 | MR 3008228 | Zbl 1292.35128
, , ,[7] The concentration compactness principle in the calculus of variations, Parts I and II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 109 -145 | EuDML 78069 | Numdam | MR 778970 | Zbl 0541.49009
,[8] Infinitely many positive solutions for the nonlinear Schrödinger equations in , Calc. Var. Partial Differ. Equ. 37 (2010), 423 -439 | MR 2592980 | Zbl 1189.35106
, ,