Let . We construct a Hölder continuous mapping of a square into such that the distributional Jacobian equals to one-dimensional Hausdorff measure on a line segment.
@article{AIHPC_2014__31_5_947_0,
author = {Hencl, Stanislav and Liu, Zhuomin and Mal\'y, Jan},
title = {Distributional {Jacobian} equal to $ {\mathcal{H}}^{1}$ measure},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {947--955},
year = {2014},
publisher = {Elsevier},
volume = {31},
number = {5},
doi = {10.1016/j.anihpc.2013.08.002},
mrnumber = {3258361},
zbl = {06349274},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2013.08.002/}
}
TY - JOUR
AU - Hencl, Stanislav
AU - Liu, Zhuomin
AU - Malý, Jan
TI - Distributional Jacobian equal to $ {\mathcal{H}}^{1}$ measure
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2014
SP - 947
EP - 955
VL - 31
IS - 5
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2013.08.002/
DO - 10.1016/j.anihpc.2013.08.002
LA - en
ID - AIHPC_2014__31_5_947_0
ER -
%0 Journal Article
%A Hencl, Stanislav
%A Liu, Zhuomin
%A Malý, Jan
%T Distributional Jacobian equal to $ {\mathcal{H}}^{1}$ measure
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 947-955
%V 31
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2013.08.002/
%R 10.1016/j.anihpc.2013.08.002
%G en
%F AIHPC_2014__31_5_947_0
Hencl, Stanislav; Liu, Zhuomin; Malý, Jan. Distributional Jacobian equal to $ {\mathcal{H}}^{1}$ measure. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 947-955. doi: 10.1016/j.anihpc.2013.08.002
[1] , Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 no. 4 (1976/1977), 337 -403 | MR | Zbl
[2] , , The Jacobian determinant revisited, Invent. Math. 185 no. 1 (2011), 17 -54 | MR | Zbl
[3] , Some remarks on the distributional Jacobian, Nonlinear Anal. 53 no. 7–8 (2003), 1101 -1114 | MR | Zbl
[4] , , An extension of the identity , C. R. Math. Acad. Sci. Paris 348 no. 17–18 (2010), 973 -976 | MR | Zbl
[5] , A remark on the equality , Differential Integral Equations 6 no. 5 (1993), 1089 -1100 | MR | Zbl
[6] , Sobolev homeomorphism with zero Jacobian almost everywhere, J. Math. Pures Appl. (9) 95 no. 4 (2011), 444 -458 | MR | Zbl
[7] , , Lectures on mappings of finite distortion, Lecture Notes in Mathematics , Springer (2013) | MR
[8] , , Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs , The Clarendon Press, Oxford University Press, New York (2001) | MR
[9] , , On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 no. 2 (1992), 129 -143 | MR | Zbl
[10] , , Functions of bounded higher variation, Indiana Univ. Math. J. 51 no. 3 (2002), 645 -677 | MR | Zbl
[11] , , Minimal assumptions for the integrability of the Jacobian, Ricerche Mat. 51 no. 2 (2003), 297 -311 | MR | Zbl
[12] , Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften vol. 130 , Springer-Verlag, New York (1966) | MR | Zbl
[13] , . A remark on the distributional determinant, C. R. Acad. Sci. Paris Sér. I Math. 311 no. 1 (1990), 13 -17 | MR | Zbl
[14] , On the singular support of the distributional determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 no. 6 (1993), 657 -696 | MR | EuDML | Zbl | Numdam
[15] , , , On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 no. 2 (1994), 217 -243 | MR | EuDML | Zbl | Numdam
[16] , An example of an homeomorphism that is not absolutely continuous in the sense of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053 -1054 | MR | Zbl
[17] , The weak convergence of completely additive vector-valued set functions, Sibirsk. Mat. Z̆. 9 (1968), 1386 -1394 | MR | Zbl
[18] , Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal. 100 no. 2 (1988), 105 -127 | MR | Zbl
Cité par Sources :






