Duality methods are used to generate explicit solutions to nonlinear Hodge systems, demonstrate the well-posedness of boundary value problems, and reveal, via the Hodge–Bäcklund transformation, underlying symmetries among superficially different forms of the equations.
Keywords: Hodge–Frobenius equations, Hodge–Bäcklund transformations, Nonlinear Hodge theory, A-harmonic forms
@article{AIHPC_2014__31_2_339_0,
author = {Marini, Antonella and Otway, Thomas H.},
title = {Duality methods for a class of quasilinear systems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {339--348},
year = {2014},
publisher = {Elsevier},
volume = {31},
number = {2},
doi = {10.1016/j.anihpc.2013.03.007},
mrnumber = {3181673},
zbl = {1300.35047},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2013.03.007/}
}
TY - JOUR AU - Marini, Antonella AU - Otway, Thomas H. TI - Duality methods for a class of quasilinear systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 339 EP - 348 VL - 31 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2013.03.007/ DO - 10.1016/j.anihpc.2013.03.007 LA - en ID - AIHPC_2014__31_2_339_0 ER -
%0 Journal Article %A Marini, Antonella %A Otway, Thomas H. %T Duality methods for a class of quasilinear systems %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 339-348 %V 31 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2013.03.007/ %R 10.1016/j.anihpc.2013.03.007 %G en %F AIHPC_2014__31_2_339_0
Marini, Antonella; Otway, Thomas H. Duality methods for a class of quasilinear systems. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 339-348. doi: 10.1016/j.anihpc.2013.03.007
[1] , , Advances in differential forms and the A-harmonic equations, Math. Comput. Modelling 37 (2003), 1393-1426 | MR | Zbl
[2] , , Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Physics 59 (2009), 620-631 | MR | Zbl
[3] , , A duality result between the minimal surface equation and the maximal surface equation, An. Acad. Brasil. Ciênc 73 (2001), 161-164 | MR | Zbl
[4] , Applied Exterior Calculus, Wiley, New York (1985) | MR | Zbl
[5] , , , Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999), 37-115 | MR | Zbl
[6] , Extensions of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata 151 (2011), 373-386 | MR | Zbl
[7] , , On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties, Contemporary Math. 283 (1999), 203-229 | MR | Zbl
[8] , , Approaching a partial differential equation of mixed elliptic–hyperbolic type, , , , (ed.), Ill-posed and Inverse Problems, VSP (2002), 263-276
[9] , , Nonlinear Hodge–Frobenius equations and the Hodge–Bäcklund transformation, Proc. R. Soc. Edinburgh A 140 (2010), 787-819 | MR | Zbl
[10] , , Constructing completely integrable fields by the method of generalized streamlines, arXiv:1205.7028 [math.AP] | Zbl
[11] , , Decomposition and their application to nonlinear electro- and magnetostatic boundary value problems, , (ed.), Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics vol. 1357, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1988) | Zbl
[12] , Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin (1966) | MR | Zbl
[13] , Nonlinear Hodge maps, J. Math. Phys. 41 (2000), 5745-5766 | MR | Zbl
[14] , Maps and fields with compressible density, Rend. Sem. Mat. Univ. Padova 111 (2004), 133-159 | MR | EuDML | Zbl | Numdam
[15] , The Dirichlet Problem for Elliptic–Hyperbolic Equations of Keldysh Type, Lecture Notes in Mathematics vol. 2043, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (2012) | MR | Zbl
[16] , Hodge Decomposition: A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics vol. 1607, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1995) | MR | Zbl
[17] , , A nonlinear Hodge–de Rham theorem, Acta Math. 125 (1970), 57-73 | MR | Zbl
[18] , , Nonlinear Hodge theory: Applications, Advances in Math. 31 (1979), 1-15 | MR | Zbl
[19] , , , Generalized Bernstein property and gravitational strings in Born–Infeld theory, Nonlinearity 20 (2007), 1193-1213 | MR | Zbl
[20] , Classical solutions in the Born–Infeld theory, Proc. R. Soc. Lond. Ser. A 456 (2000), 615-640 | MR | Zbl
Cité par Sources :






