The existence and uniqueness of weak solutions are studied to the initial Dirichlet problem of the equation
@article{AIHPC_2012__29_3_377_0,
author = {Lian, Songzhe and Gao, Wenjie and Yuan, Hongjun and Cao, Chunling},
title = {Existence of solutions to an initial {Dirichlet} problem of evolutional $ p(x)${-Laplace} equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {377--399},
year = {2012},
publisher = {Elsevier},
volume = {29},
number = {3},
doi = {10.1016/j.anihpc.2012.01.001},
zbl = {1255.35153},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.001/}
}
TY - JOUR AU - Lian, Songzhe AU - Gao, Wenjie AU - Yuan, Hongjun AU - Cao, Chunling TI - Existence of solutions to an initial Dirichlet problem of evolutional $ p(x)$-Laplace equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 377 EP - 399 VL - 29 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.001/ DO - 10.1016/j.anihpc.2012.01.001 LA - en ID - AIHPC_2012__29_3_377_0 ER -
%0 Journal Article %A Lian, Songzhe %A Gao, Wenjie %A Yuan, Hongjun %A Cao, Chunling %T Existence of solutions to an initial Dirichlet problem of evolutional $ p(x)$-Laplace equations %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 377-399 %V 29 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.001/ %R 10.1016/j.anihpc.2012.01.001 %G en %F AIHPC_2012__29_3_377_0
Lian, Songzhe; Gao, Wenjie; Yuan, Hongjun; Cao, Chunling. Existence of solutions to an initial Dirichlet problem of evolutional $ p(x)$-Laplace equations. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 377-399. doi: 10.1016/j.anihpc.2012.01.001
[1] , , Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal. 164 no. 3 (2002), 213-259 | Zbl
[2] , , , Regularity results for parabolic systems related to a class of non Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 no. 1 (2004), 25-60 | EuDML | Zbl | Numdam
[3] , , Anisotropic parabolic equations with variable nonlinearity, Publ. Mat. 53 no. 2 (2009), 355-399 | EuDML | Zbl
[4] , Nonlinearity and functional analysis, Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, Academic Press, New York–London (1977)
[5] , Degenerate Parabolic Equations, Springer-Verlag, New York (1993) | Zbl
[6] , , On the spaces and , J. Math. Anal. Appl. 263 no. 2 (2001), 424-446 | Zbl
[7] , , On spaces and , Czechoslovak Math. J. 41 no. 116 (1991), 592-618 | EuDML | Zbl
[8] , , , Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, Rhode Island (1968)
[9] , Non-uniqueness for the p-harmonic heat flow with potential into homogeneous spaces, Chinese Ann. Math. Ser. A 27 no. 4 (2006), 443-448, Chinese J. Contemp. Math. 27 no. 3 (2006), 231-238
[10] , Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. vol. 1748, Springer, Berlin (2000) | Zbl
[11] , Existence and nonexistence of solutions for , J. Math. Anal. Appl. 172 no. 1 (1993), 130-146
[12] , On the Cauchy problem and initial traces for the evolution p-laplacian equations with strongly nonlinear sources, J. Diff. Eqs. 121 no. 2 (1995), 329-383 | Zbl
[13] , Passage to the limit in nonlinear variational problems, Mat. Sb. 183 no. 8 (1992), 47-84, Russian Acad. Sci. Sb. Math. 76 no. 2 (1993), 427-459 | Zbl
[14] , On the density of smooth functions in Sobolev–Orlicz spaces, Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 67-81, J. Math. Sci. (N.Y.) 132 no. 3 (2006), 285-294 | EuDML | Zbl
Cité par Sources :





