Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics
Annales de l'I.H.P. Analyse non linéaire, Volume 28 (2011) no. 2, pp. 283-301.

We use De Giorgi techniques to prove Hölder continuity of weak solutions to a class of drift-diffusion equations, with L 2 initial data and divergence free drift velocity that lies in L t 𝐵𝑀𝑂 x -1 . We apply this result to prove global regularity for a family of active scalar equations which includes the advection–diffusion equation that has been proposed by Moffatt in the context of magnetostrophic turbulence in the Earthʼs fluid core.

Nous utilisons des techniques de De Giorgi pour démontrer la continuité Hölder de solutions faibles pour une classe dʼéquations de dérive-diffusion, avec données initiales L 2 et champ de vitesse incompressible appartenant à L t 𝐵𝑀𝑂 x -1 . Nous appliquons ce résultat pour démontrer la régularité globale pour une famille dʼéquations du scalaire actif qui comprend lʼéquation dʼadvection–diffusion qui a été proposée par Moffatt dans le contexte de la turbulence magnétostrophique dans le noyau fluide de la Terre.

DOI: 10.1016/j.anihpc.2011.01.002
Classification: 76D03, 35Q35, 76W05
Keywords: Global regularity, Weak solutions, De Giorgi, Parabolic equations, Magneto-geostrophic equations
@article{AIHPC_2011__28_2_283_0,
     author = {Friedlander, Susan and Vicol, Vlad},
     title = {Global well-posedness for an advection{\textendash}diffusion equation arising in magneto-geostrophic dynamics},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {283--301},
     publisher = {Elsevier},
     volume = {28},
     number = {2},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.01.002},
     mrnumber = {2784072},
     zbl = {1277.35291},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.01.002/}
}
TY  - JOUR
AU  - Friedlander, Susan
AU  - Vicol, Vlad
TI  - Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 283
EP  - 301
VL  - 28
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2011.01.002/
DO  - 10.1016/j.anihpc.2011.01.002
LA  - en
ID  - AIHPC_2011__28_2_283_0
ER  - 
%0 Journal Article
%A Friedlander, Susan
%A Vicol, Vlad
%T Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 283-301
%V 28
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2011.01.002/
%R 10.1016/j.anihpc.2011.01.002
%G en
%F AIHPC_2011__28_2_283_0
Friedlander, Susan; Vicol, Vlad. Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics. Annales de l'I.H.P. Analyse non linéaire, Volume 28 (2011) no. 2, pp. 283-301. doi : 10.1016/j.anihpc.2011.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2011.01.002/

[1] D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81-122 | MR | Zbl

[2] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics 171 no. 3 (2010), 1903-1930 | MR | Zbl

[3] L. Caffarelli, A. Vasseur, The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete Contin. Dyn. Syst. Ser. S 3 no. 3 (2010), 409-427 | MR | Zbl

[4] M. Cannone, F. Planchon, More Lyapunov functions for the Navier–Stokes equations, R. Salvi (ed.), Navier–Stokes Equations: Theory and Numerical Methods, Lecture Notes in Pure and Applied Mathematics vol. 223, Dekker, New York (2001), 19-26 | MR

[5] J.-Y. Chemin, N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differential Equations 121 no. 2 (1995), 314-328 | MR | Zbl

[6] A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR | Zbl

[7] D. Córdoba, C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer. Math. Soc. 15 no. 3 (2002), 665-670 | MR | Zbl

[8] P. Constantin, G. Iyer, J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 no. 6 (2008), 2681-2692 | MR | Zbl

[9] P. Constantin, A.J. Majda, E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7 no. 6 (1994), 1495-1533 | MR | Zbl

[10] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 no. 6 (2008), 1103-1110 | EuDML | Numdam | MR | Zbl

[11] P. Constantin, J. Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 1 (2009), 159-180 | EuDML | Numdam | MR | Zbl

[12] E. De Giorgi, Sulla differenziabilità e lʼanaliticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat Nat. 3 (1957), 25-43 | MR | Zbl

[13] S. Friedlander, V. Vicol, Higher regularity of Hölder continuous solutions of parabolic equations with singular drift velocities, arXiv:1102.0585v1 [math.AP] | MR | Zbl

[14] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1993) | MR | Zbl

[15] G.A. Glatzmaier, D.E. Ogden, T.L. Clune, Modeling the Earthâs Dynamo, R.S.J. Sparks, C.J. Hawkesworth (ed.), State of the Planet: Frontiers and Challenges in Geophysics, Geophysical Monograph vol. 150 (2004), 13-24

[16] A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR | Zbl

[17] H. Koch, D. Tataru, Well Posedness for the Navier–Stokes equations, Adv. Math. 157 (2001), 22-35 | MR | Zbl

[18] O.A. Ladyženskaja, V.A. Solonnikov, N.N. UralʼCeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs vol. 23, American Mathematical Society, Providence, RI (1967) | MR

[19] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., River Edge, NJ (1996) | MR | Zbl

[20] J.-L. Lions, Quelque Méthodes de Résolutions des Problémes aux Limites Non-Linéares, Dunod, Paris (1969) | MR | Zbl

[21] W. Mclean, Local and global descriptions of periodic pseudodifferential operators, Math. Nachr. 150 (1991), 151-161 | MR | Zbl

[22] H.K. Moffatt, Magnetostrophic turbulence and the geodynamo, IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, IUTAM Bookser. vol. 4, Springer, Dordrecht (2008), 339-346 | MR | Zbl

[23] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134 | MR | Zbl

[24] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954 | MR | Zbl

[25] H. Osada, Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ. 27 no. 4 (1987), 597-619 | MR | Zbl

[26] M. Ruzhansky, V. Turunen, On the toroidal quantization of periodic pseudo-differential operators, Numer. Funct. Anal. Optim. 30 no. 9–10 (2009), 1098-1124 | MR | Zbl

[27] Y.A. Semenov, Regularity theorems for parabolic equations, J. Funct. Anal. 231 no. 2 (2006), 375-417 | MR | Zbl

[28] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, On divergence-free drifts, arXiv:1010.6025v1 [math.AP] | MR | Zbl

[29] L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 no. 2 (2010), 693-704 | Numdam | MR | Zbl

[30] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series vol. 43, Princeton University Press, Princeton, NJ (1993) | MR | Zbl

[31] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI (2001) | MR | Zbl

[32] A. Vasseur, A new proof of partial regularity of solutions to Navier–Stokes equations, NoDEA Nonlinear Differential Equations Appl. 14 no. 5–6 (2007), 753-785 | MR | Zbl

[33] J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal. 36 no. 3 (2004), 1014-1030 | MR | Zbl

[34] Q.S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys. 244 (2004), 245-260 | MR | Zbl

[35] Q.S. Zhang, Local estimates on two linear parabolic equations with singular coefficients, Pacific Journal of Math. 223 no. 2 (2006), 367-396 | MR | Zbl

Cited by Sources: