Given a compact m-dimensional manifold M and , consider the space of self mappings of M. We prove here that for every map f in a residual subset of , the closing lemma holds. In particular, it follows that the set of periodic points is dense in the nonwandering set of a generic map. The proof is based on a geometric result asserting that for generic maps the future orbit of every point in M visits the critical set at most m times.
Keywords: Closing lemma, Critical points, Transversality
@article{AIHPC_2010__27_6_1461_0,
author = {Rovella, Alvaro and Sambarino, Mart{\'\i}n},
title = {The $ {C}^{1}$ closing lemma for generic $ {C}^{1}$ endomorphisms},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1461--1469},
year = {2010},
publisher = {Elsevier},
volume = {27},
number = {6},
doi = {10.1016/j.anihpc.2010.09.003},
mrnumber = {2738328},
zbl = {1214.37009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2010.09.003/}
}
TY - JOUR
AU - Rovella, Alvaro
AU - Sambarino, Martín
TI - The $ {C}^{1}$ closing lemma for generic $ {C}^{1}$ endomorphisms
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2010
SP - 1461
EP - 1469
VL - 27
IS - 6
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2010.09.003/
DO - 10.1016/j.anihpc.2010.09.003
LA - en
ID - AIHPC_2010__27_6_1461_0
ER -
%0 Journal Article
%A Rovella, Alvaro
%A Sambarino, Martín
%T The $ {C}^{1}$ closing lemma for generic $ {C}^{1}$ endomorphisms
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 1461-1469
%V 27
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2010.09.003/
%R 10.1016/j.anihpc.2010.09.003
%G en
%F AIHPC_2010__27_6_1461_0
Rovella, Alvaro; Sambarino, Martín. The $ {C}^{1}$ closing lemma for generic $ {C}^{1}$ endomorphisms. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 6, pp. 1461-1469. doi: 10.1016/j.anihpc.2010.09.003
[1] , , Stable Mappings and Their Singularities, Grad. Texts in Math. vol. 14, Springer, New York (1973) | MR | Zbl
[2] , Introduction to Global Analysis, Academic Press (1980) | MR | Zbl
[3] , Differential Topology, Grad. Texts in Math. vol. 33, Springer (1991) | MR
[4] , The closing lemma, Amer. J. Math. 89 (1967), 956-1009 | MR | Zbl
[5] , , The closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 no. 2 (1983), 261-313 | MR | Zbl
[6] , Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199 | MR | Zbl
[7] , The closing lemma for non-singular endomorphisms, Ergodic Theory Dynam. Systems 11 (1991), 393-412 | MR | Zbl
[8] , The closing lemma for endomorphisms with finitely many singularities, Proc. Amer. Math. Soc. 114 (1992), 217-223 | MR | Zbl
Cité par Sources :






