We consider solutions of the focusing cubic and quintic Gross–Pitaevskii (GP) hierarchies. We identify an observable corresponding to the average energy per particle, and we prove that it is a conserved quantity. We prove that all solutions to the focusing GP hierarchy at the -critical or -supercritical level blow up in finite time if the energy per particle in the initial condition is negative. Our results do not assume any factorization of the initial data.
@article{AIHPC_2010__27_5_1271_0, author = {Chen, Thomas and Pavlovi\'c, Nata\v{s}a and Tzirakis, Nikolaos}, title = {Energy conservation and blowup of solutions for focusing {Gross{\textendash}Pitaevskii} hierarchies}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1271--1290}, publisher = {Elsevier}, volume = {27}, number = {5}, year = {2010}, doi = {10.1016/j.anihpc.2010.06.003}, mrnumber = {2683760}, zbl = {1200.35253}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.06.003/} }
TY - JOUR AU - Chen, Thomas AU - Pavlović, Nataša AU - Tzirakis, Nikolaos TI - Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1271 EP - 1290 VL - 27 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2010.06.003/ DO - 10.1016/j.anihpc.2010.06.003 LA - en ID - AIHPC_2010__27_5_1271_0 ER -
%0 Journal Article %A Chen, Thomas %A Pavlović, Nataša %A Tzirakis, Nikolaos %T Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1271-1290 %V 27 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2010.06.003/ %R 10.1016/j.anihpc.2010.06.003 %G en %F AIHPC_2010__27_5_1271_0
Chen, Thomas; Pavlović, Nataša; Tzirakis, Nikolaos. Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 5, pp. 1271-1290. doi : 10.1016/j.anihpc.2010.06.003. http://www.numdam.org/articles/10.1016/j.anihpc.2010.06.003/
[1] Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys. 127 no. 6 (2007), 1194-1220 | MR | Zbl
, , ,[2] Bose–Einstein quantum phase transition in an optical lattice model, Phys. Rev. A 70 (2004), 023612 | Zbl
, , , , ,[3] The Hartree–von Neumann limit of many body dynamics, http://arxiv.org/abs/0904.4514 | Zbl
, ,[4] Smooth Feshbach map and operator-theoretic renormalization group methods, J. Funct. Anal. 203 no. 1 (2003), 44-92 | MR | Zbl
, , , ,[5] Semilinear Schrödinger Equations, Courant Lect. Notes vol. 10, Amer. Math. Soc. (2003) | MR | Zbl
,[6] The quintic NLS as the mean field limit of a Boson gas with three-body interactions, http://arxiv.org/abs/0812.2740 | MR | Zbl
, ,[7] On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. Ser. A 27 no. 2 (2010), 715-739 | MR | Zbl
, ,[8] Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Rat. Mech. Anal. 179 no. 2 (2006), 265-283 | MR | Zbl
, , , ,[9] Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 no. 4 (2007), 500-545 | MR | Zbl
, ,[10] Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate, Comm. Pure Appl. Math. 59 no. 12 (2006), 1659-1741 | MR | Zbl
, , ,[11] Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 (2007), 515-614 | MR | Zbl
, , ,[12] Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math. 172 no. 1 (2010), 291-370 | MR | Zbl
, , ,[13] Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 no. 6 (2001), 1169-1205 | MR | Zbl
, ,[14] Mean-field- and classical limit of many-body Schrödinger dynamics for bosons, Comm. Math. Phys. 271 no. 3 (2007), 681-697 | MR | Zbl
, , ,[15] Atomism and quantization, J. Phys. A 40 no. 12 (2007), 3033-3045 | MR | Zbl
, , ,[16] On the mean-field limit of bosons with Coulomb two-body interaction, Comm. Math. Phys. 288 no. 3 (2009), 1023-1059 | MR | Zbl
, , ,[17] L. Glangetas, F. Merle, A geometrical approach of existence of blow up solutions in for nonlinear Schrödinger equation, Rep. No. R95031, Laboratoire d'Analyse Numérique, Univ. Pierre and Marie Curie, 1995.
[18] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys. 18 no. 9 (1977), 1794-1797 | MR | Zbl
,[19] Second-order corrections to mean field evolution for weakly interacting bosons. I, Comm. Math. Phys. 294 no. 1 (2010), 273-301 | MR | Zbl
, , ,[20] A priori estimates for many-body Hamiltonian evolution of interacting boson system, J. Hyperbolic Differ. Equ. 5 no. 4 (2008), 857-883 | MR | Zbl
, ,[21] The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265-277 | MR
,[22] Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics, arXiv:0808.0505 | MR | Zbl
, , ,[23] On the uniqueness of solutions to the Gross–Pitaevskii hierarchy, Commun. Math. Phys. 279 no. 1 (2008), 169-185 | MR | Zbl
, ,[24] Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409
, ,[25] The Mathematics of the Bose Gas and Its Condensation, Birkhäuser (2005) | MR | Zbl
, , , ,[26] A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys. 224 (2001) | MR | Zbl
, , ,[27] Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52 no. 2 (1999), 193-270 | MR
,[28] Blow-up of solutions for the one-dimensional nonlinear Schrödinger equations with critical power nonlinearity, Proc. Amer. Math. Soc. 111 no. 2 (1991), 487-496 | MR | Zbl
, ,[29] Quantum fluctuations and rate of convergence towards mean field dynamics, Comm. Math. Phys. 291 no. 1 (2009), 31-61 | MR | Zbl
, ,[30] Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys. 52 no. 3 (1980), 569-615 | MR
,[31] Nonexistence of global solutions to the Cauchy problem for the damped non-linear Schrödinger equations, SIAM J. Math. Anal. 15 (1984), 357-366 | MR | Zbl
,[32] Averaged description of wave beams in linear and nonlinear media (the method of moments), Radiophys. and Quantum Electronics 14 (1971), 1062-1070, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14 (1971), 1353-1363
, , ,Cited by Sources: