For a smooth and a family of L-periodic -functions with , the basic problem is to understand the weak* limit as of L-periodic minimizers of
Keywords: Phase transitions, Cahn–Hilliard, Singular limits, Relaxed minimizers, Regularized minimizers, Minimal jump principle, Gamma limits
@article{AIHPC_2010__27_2_655_0,
author = {Plotnikov, P.I. and Toland, J.F.},
title = {Phase transitions with a minimal number of jumps in the singular limits of higher order theories},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {655--691},
year = {2010},
publisher = {Elsevier},
volume = {27},
number = {2},
doi = {10.1016/j.anihpc.2009.11.002},
zbl = {1192.82034},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.002/}
}
TY - JOUR AU - Plotnikov, P.I. AU - Toland, J.F. TI - Phase transitions with a minimal number of jumps in the singular limits of higher order theories JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 655 EP - 691 VL - 27 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.002/ DO - 10.1016/j.anihpc.2009.11.002 LA - en ID - AIHPC_2010__27_2_655_0 ER -
%0 Journal Article %A Plotnikov, P.I. %A Toland, J.F. %T Phase transitions with a minimal number of jumps in the singular limits of higher order theories %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 655-691 %V 27 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.002/ %R 10.1016/j.anihpc.2009.11.002 %G en %F AIHPC_2010__27_2_655_0
Plotnikov, P.I.; Toland, J.F. Phase transitions with a minimal number of jumps in the singular limits of higher order theories. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 655-691. doi: 10.1016/j.anihpc.2009.11.002
[1] , , On the singular limit in phase field model of phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 141-178 | MR | EuDML | Zbl | Numdam
[2] , , A variational approach for a class of singular perturbation problems and applications, Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 27-42 | MR | Zbl
[3] , Mathematical Methods of Classical Mechanics, Grad. Texts in Math. vol. 60, Springer, New York (1989) | MR
[4] , Γ-Convergence for Beginners, Oxford Univ. Press, Oxford (2002) | MR
[5] , , , Structured phase transitions on a finite interval, Arch. Ration. Mech. Anal. 86 (1984), 317-351 | MR | Zbl
[6] , , Singular perturbation problems in the calculus of variations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 11 (1984), 395-430 | MR | EuDML | Numdam
[7] , Equilibrium of bars, J. Elasticity 5 (1975), 191-201 | MR | Zbl
[8] , , Modern Methods in the Calculus of Variations: Spaces, Springer, New York (2007) | MR | Zbl
[9] , , Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math. 47 (1994), 405-435 | MR | Zbl
[10] , Qualitative behaviour of local minimizers of singular perturbed variational problems, J. Elasticity 87 (2007), 73-94 | MR | Zbl
[11] , , Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. (5) 14 (1977), 285-299 | MR | Zbl
[12] , Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations 1 (1993), 169-204 | MR | Zbl
[13] P.I. Plotnikov, J.F. Toland, Strain-gradient theory of hydroelastic travelling waves and their singular limits, University of Bath, Preprint, 2009
[14] , Variational Methods, Ergeb. Math. Grenzgeb. vol. 34, Springer-Verlag, Berlin (2008) | MR
Cité par Sources :





