We present a variational model to study the quasistatic growth of brittle cracks in hyperelastic materials, in the framework of finite elasticity, taking into account the non-interpenetration condition.
Keywords: Variational models, Energy minimization, Free-discontinuity problems, Polyconvexity, Quasistatic evolution, Rate-independent processes, Brittle fracture, Crack propagation, Griffith's criterion, Finite elasticity, Non-interpenetration
@article{AIHPC_2010__27_1_257_0,
author = {Dal Maso, Gianni and Lazzaroni, Giuliano},
title = {Quasistatic crack growth in finite elasticity with non-interpenetration},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {257--290},
year = {2010},
publisher = {Elsevier},
volume = {27},
number = {1},
doi = {10.1016/j.anihpc.2009.09.006},
mrnumber = {2580510},
zbl = {1188.35205},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.006/}
}
TY - JOUR AU - Dal Maso, Gianni AU - Lazzaroni, Giuliano TI - Quasistatic crack growth in finite elasticity with non-interpenetration JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 257 EP - 290 VL - 27 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.006/ DO - 10.1016/j.anihpc.2009.09.006 LA - en ID - AIHPC_2010__27_1_257_0 ER -
%0 Journal Article %A Dal Maso, Gianni %A Lazzaroni, Giuliano %T Quasistatic crack growth in finite elasticity with non-interpenetration %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 257-290 %V 27 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.006/ %R 10.1016/j.anihpc.2009.09.006 %G en %F AIHPC_2010__27_1_257_0
Dal Maso, Gianni; Lazzaroni, Giuliano. Quasistatic crack growth in finite elasticity with non-interpenetration. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 257-290. doi: 10.1016/j.anihpc.2009.09.006
[1] , A compactness theorem for a new class of functions of bounded variation, Boll. Unione Mat. Ital. B 3 (1989), 857-881 | MR | Zbl
[2] , On the lower semicontinuity of quasiconvex integrals in , Nonlinear Anal. 23 (1994), 405-425 | MR | Zbl
[3] , , , Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl
[4] , Some open problems in elasticity, , , (ed.), Geometry, Mechanics, and Dynamics, Springer, New York (2002), 3-59
[5] , , Some aspects of covering theory, Proc. Amer. Math. Soc. 3 (1952), 804-812 | MR | Zbl
[6] , , , The variational approach to fracture, J. Elasticity 91 (2008), 5-148 | MR | Zbl
[7] , , Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. vol. 580, Springer-Verlag, Berlin, New York (1977) | MR | Zbl
[8] , A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal. 167 (2003), 211-233 | MR | Zbl
[9] , Mathematical Elasticity — vol. I: Three-Dimensional Elasticity, Stud. Math. Appl. vol. 20, North-Holland Publishing Co., Amsterdam (1988) | MR | Zbl
[10] , , Injectivity and self-contact in nonlinear elasticity, Arch. Ration. Mech. Anal. 97 (1987), 171-188 | MR | Zbl
[11] , Direct Methods in the Calculus of Variations, Appl. Math. Sci. vol. 78, Springer, New York (2008) | MR | Zbl
[12] , , , Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal. 176 (2005), 165-225 | MR | Zbl
[13] , , , Quasistatic Crack Growth in Finite Elasticity, SISSA, Trieste (2004), http://www.sissa.it/fa/
[14] , , , A variational model for quasi-static growth in nonlinear elasticity: Some qualitative properties of the solutions, Boll. Unione Mat. Ital. B 9 (2009), 371-390 | MR | Zbl
[15] , , A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal. 162 (2002), 101-135 | MR | Zbl
[16] , , Modern Methods in the Calculus of Variations: Spaces, Springer, New York (2007) | MR | Zbl
[17] , , Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl. Math. 56 (2003), 1465-1500 | MR | Zbl
[18] , , Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998), 1319-1342 | MR | Zbl
[19] , , Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math. 595 (2006), 55-91 | MR | Zbl
[20] , , , , A lower semi-continuity result for polyconvex functionals in SBV, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 321-336 | MR | Zbl
[21] , , Non interpenetration of matter for SBV-deformations of hyperelastic brittle materials, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 1019-1041 | MR | Zbl
[22] , The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London A 221 (1921), 163-198
[23] , Über Annäherung an Lebesgue'sche Integrale durch Riemann'sche Summen, Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123 (1914), 713-743 | JFM
[24] , , Energy release rate for cracks in finite-strain elasticity, Math. Methods Appl. Sci. 31 (2008), 501-528 | MR | Zbl
[25] D. Knees, C. Zanini, A. Mielke, Crack growth in polyconvex materials, Phys. D, doi:10.1016/j.physd.2009.02.008, in press | MR
[26] , Quasistatic crack growth in finite elasticity with Lipschitz data, http://cvgmt.sns.it/ (2009)
[27] , Evolution of rate-independent systems, , (ed.), Evolutionary Equations — vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005), 461-559 | MR
[28] , Perfect blankets, Trans. Amer. Math. Soc. 61 (1947), 418-442 | MR | Zbl
[29] , Large deformation isotropic elasticity: On the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. London A 326 (1972), 565-584 | Zbl
[30] , Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, Proc. Roy. Soc. London A 328 (1972), 567-583 | Zbl
[31] , Functional Analysis, Grundlehren Math. Wiss. vol. 123, Springer-Verlag, Berlin, New York (1980) | MR | Zbl
Cité par Sources :






