Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain
Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 5, p. 2025-2053
@article{AIHPC_2009__26_5_2025_0,
     author = {Girinon, Vincent},
     title = {Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {26},
     number = {5},
     year = {2009},
     pages = {2025-2053},
     doi = {10.1016/j.anihpc.2008.12.007},
     zbl = {1176.35128},
     mrnumber = {2566720},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2009__26_5_2025_0}
}
Girinon, Vincent. Navier-Stokes Equations With Nonhomogeneous Boundary Conditions in a Convex Bi-Dimensional Domain. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 5, pp. 2025-2053. doi : 10.1016/j.anihpc.2008.12.007. http://www.numdam.org/item/AIHPC_2009__26_5_2025_0/

[1] Amann H., Ordinary Differential Equations. an Introduction to Nonlinear Analysis, de Gruyter Stud. Math., de Gruyter, 1990. | MR 1071170 | Zbl 0708.34002

[2] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 26, Oxford University Press, 2003. | MR 2040667 | Zbl 1080.76001

[3] Feireisl E., On Compactness of Solutions to the Isentropic Navier-Stokes Equations When the Density Is Not Square Integrable, Comment. Math. Univ. Carolin. 42 (1) (2001) 83-98. | MR 1825374 | Zbl 1115.35096

[4] Feireisl E., Novotný A., Petzeltová H., On Existence of Globally Defined Weak Solution to the Navier-Stokes Equations, J. Math. Fluid Mech. 3 (2001) 358-392. | MR 1867887 | Zbl 0997.35043

[5] V. Girinon, Quelques problèmes aux limites pour les équations de Navier-Stokes, Thèse de l'Université de Toulouse III, 2008.

[6] Lions P.-L., Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1996. | MR 1422251 | Zbl 0866.76002

[7] Lions P.-L., Mathematical Topics in Fluid Mechanics, Vol. 2: Compressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1998. | MR 1637634 | Zbl 0908.76004

[8] Novo S., Compressible Navier-Stokes Model With Inflow-Outflow Boundary Conditions, J. Math. Fluid Mech. 7 (2005) 485-514. | MR 2189672 | Zbl 1090.35139

[9] Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Ser. Math. Appl., vol. 27, Oxford University Press, 2004. | MR 2084891 | Zbl 1088.35051