@article{AIHPC_2008__25_5_907_0,
author = {Bjorland, Clayton and Schonbek, Maria E.},
title = {On questions of decay and existence for the viscous {Camassa-Holm} equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {907--936},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {5},
doi = {10.1016/j.anihpc.2007.07.003},
mrnumber = {2457817},
zbl = {1156.35323},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/}
}
TY - JOUR AU - Bjorland, Clayton AU - Schonbek, Maria E. TI - On questions of decay and existence for the viscous Camassa-Holm equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 907 EP - 936 VL - 25 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/ DO - 10.1016/j.anihpc.2007.07.003 LA - en ID - AIHPC_2008__25_5_907_0 ER -
%0 Journal Article %A Bjorland, Clayton %A Schonbek, Maria E. %T On questions of decay and existence for the viscous Camassa-Holm equations %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 907-936 %V 25 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/ %R 10.1016/j.anihpc.2007.07.003 %G en %F AIHPC_2008__25_5_907_0
Bjorland, Clayton; Schonbek, Maria E. On questions of decay and existence for the viscous Camassa-Holm equations. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 5, pp. 907-936. doi: 10.1016/j.anihpc.2007.07.003
[1] , Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal. 128 (4) (1994) 329-358. | Zbl | MR
[2] , , , Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (6) (1982) 771-831. | Zbl | MR
[3] , , An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (11) (1993) 1661-1664. | Zbl | MR
[4] , , , , , , Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett. 81 (24) (1998) 5338-5341. | Zbl | MR
[5] , , , , , , The Camassa-Holm equations and turbulence, Phys. D 133 (1-4) (1999) 49-65. | MR
[6] , , , , , , A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids 11 (8) (1999) 2343-2353. | Zbl | MR
[7] , , Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. | Zbl | MR
[8] J.A. Domaradzki, D.D. Holm, Navier-Stokes-alpha model: Les equations with nonlinear dispersion, 2001.
[9] , , , The Navier-Stokes-alpha model of fluid turbulence, Phys. D 152/153 (2001) 505-519. | Zbl | MR
[10] , , , The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations 14 (1) (2002) 1-35. | Zbl | MR
[11] , , , The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1) (1998) 1-81. | Zbl | MR
[12] , , Computational models of turbulence: The lans-α model and the role of global analysis, SIAM News 38 (2005).
[13] , Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951) 213-231. | Zbl | MR
[14] , , Attractors for the two-dimensional Navier-Stokes-α model: an α-dependence study, J. Dynam. Differential Equations 15 (4) (2003) 751-778. | Zbl | MR
[15] , Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934) 193-248. | MR | JFM
[16] , , Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (1784) (2001) 1449-1468. | Zbl | MR
[17] , Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2) 36 (4) (1984) 623-646. | Zbl | MR
[18] , , , Energy decay for a weak solution of the Navier-Stokes equation with slowly varying external forces, J. Funct. Anal. 144 (2) (1997) 325-358. | Zbl | MR
[19] , Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova 32 (1962) 374-397. | Zbl | MR | Numdam
[20] , The Fourier splitting method, in: Advances in Geometric Analysis and Continuum Mechanics, Stanford, CA, 1993, Internat. Press, Cambridge, MA, 1995, pp. 269-274. | Zbl | MR
[21] , Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations 5 (5) (1980) 449-473. | Zbl | MR
[22] , Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Comm. Partial Differential Equations 7 (1) (1980) 449-473. | Zbl
[23] , decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88 (3) (1985) 209-222. | Zbl | MR
[24] , Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 11 (7) (1986) 733-763. | Zbl | MR
[25] , Large time behaviour of solutions to the Navier-Stokes equations in spaces, Comm. Partial Differential Equations 20 (1-2) (1995) 103-117. | Zbl
[26] , , Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst. 13 (5) (2005) 1277-1304. | Zbl
[27] , , On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126 (3) (1996) 677-685. | Zbl
[28] , Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition. | Zbl
[29] , Decay results for weak solutions of the Navier-Stokes equations on , J. London Math. Soc. (2) 35 (2) (1987) 303-313. | Zbl
[30] , Higher order estimates in further dimensions for the solutions of Navier-Stokes equations, in: Evolution Equations, Warsaw, 2001, Banach Center Publ., vol. 60, Polish Acad. Sci., Warsaw, 2003, pp. 81-84. | Zbl | MR
[31] , Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Comm. Partial Differential Equations 20 (1-2) (1995) 119-127. | Zbl | MR
Cité par Sources :





