@article{AIHPC_2008__25_5_865_0,
author = {Denzler, Jochen and McCann, Robert J.},
title = {Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {865--888},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {5},
doi = {10.1016/j.anihpc.2007.05.002},
mrnumber = {2457815},
zbl = {1146.76053},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.002/}
}
TY - JOUR AU - Denzler, Jochen AU - McCann, Robert J. TI - Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 865 EP - 888 VL - 25 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.002/ DO - 10.1016/j.anihpc.2007.05.002 LA - en ID - AIHPC_2008__25_5_865_0 ER -
%0 Journal Article %A Denzler, Jochen %A McCann, Robert J. %T Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 865-888 %V 25 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.002/ %R 10.1016/j.anihpc.2007.05.002 %G en %F AIHPC_2008__25_5_865_0
Denzler, Jochen; McCann, Robert J. Nonlinear diffusion from a delocalized source : affine self-similarity, time reversal, & nonradial focusing geometries. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 5, pp. 865-888. doi: 10.1016/j.anihpc.2007.05.002
[1] , , , Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lecture Notes in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. | Zbl | MR
[2] , Large time asymptotics for the porous medium equation, in: Nonlinear Diffusion Equations and their Equilibrium States I, Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 21-34. | Zbl | MR
[3] , , Optimal asymptotics for solutions to the initial value problem for the porous medium equation, in: , (Eds.), Nonlinear Problems in Applied Mathematics: in honor of Professor Ivar Stakgold on his 70th birthday, Society for Industrial and Applied Mathematics, Philadelphia, 1996, pp. 10-19. | Zbl | MR
[4] , , Non-axial self-similar hole filling for the porous medium equation, J. Amer. Math. Soc. 14 (2001) 737-782. | Zbl | MR
[5] , , , , Focusing of an elongated hole in porous medium flow, Physica D 151 (2001) 228-252. | Zbl | MR
[6] , , A self-similar solution to the focusing problem for the porous medium equation, Eur. J. Appl. Math. 4 (1993) 65-81. | Zbl | MR
[7] , , , Parametric dependence of exponents and eigenvalues in focusing porous media flows, Eur. J. Appl. Math. 14 (2003) 485-512. | Zbl | MR
[8] , On some unsteady motions of a liquid or gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Mekh. 16 (1952) 67-78. | Zbl | MR
[9] , Scaling, Cambridge University Press, Cambridge, 2003. | Zbl | MR
[10] , , , , Self-similar intermediate asymptotics for a degenerate parabolic filtration absorption equation, Proc. Natl. Acad. Sci. USA 97 (2000) 9844-9848. | Zbl | MR
[11] , , Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990) 179-206. | Zbl | MR
[12] , , Linear stability of source-type similarity solutions of the thin film equation, Appl. Math. Lett. 15 (2002) 599-606. | Zbl | MR
[13] , , Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J. 49 (2000) 1323-1366. | Zbl | MR
[14] , , , , The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998) 417-440. | Zbl | MR
[15] , , , Discontinuous ‘viscosity' solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc. 320 (1990) 779-798. | Zbl | MR
[16] , , , Nonuniqueness of solutions of a degenerate parabolic equation, Ann. Mat. Pura Appl. 161 (4) (1992) 57-81. | Zbl | MR
[17] , , Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal. 14 (1990) 571-592. | Zbl | MR
[18] , , Explicit solutions of a two-dimensional fourth order nonlinear diffusion equation, Math. Comput. Modelling 37 (2003) 395-403. | Zbl | MR
[19] , , Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys. 128 (2007) 883-925. | Zbl | MR
[20] , , , Long-time behavior for a nonlinear fourth-order parabolic equation, Trans. Amer. Math. Soc. 357 (2005) 1161-1175. | Zbl | MR
[21] , , Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys. 225 (2002) 551-571. | Zbl | MR
[22] , , , , , Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math. 133 (2001) 1-82. | Zbl | MR
[23] , , Asymptotic -decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J. 49 (2000) 113-141. | Zbl | MR
[24] , , Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations 28 (2003) 1023-1056. | Zbl | MR
[25] , , , Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc. 135 (2007) 353-363. | Zbl | MR
[26] , , , Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rational Mech. Anal. 179 (2006) 217-263. | Zbl | MR
[27] , , Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Rational Mech. Anal. 164 (2002) 133-187. | Zbl | MR
[28] , On the stability of a class of self-similar solutions to the filtration-absorption equation, Eur. J. Appl. Math. 13 (2002) 179-194. | Zbl | MR
[29] , , The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004. | Zbl | MR
[30] , , A degenerate diffusion problem not in divergence form, J. Differential Equations 69 (1987) 1-14. | Zbl | MR
[31] , , Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. 81 (2002) 847-875. | Zbl | MR
[32] , , Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA 100 (2003) 6922-6925. | Zbl | MR
[33] , , Fast diffusion to self-similarity: complete spectrum, long time asymptotics, and numerology, Arch. Rational Mech. Anal. 175 (2005) 301-342. | Zbl | MR
[34] , , , , Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett. 67 (1991) 165-168. | Zbl | MR
[35] , , , , , , , , Noncircular converging flows in viscous gravity currents, Phys. Rev. E 58 (1998) 6182-6187.
[36] , , The asymptotic behaviour of a gas in an n-dimensional porous medium, Trans. Amer. Math. Soc. 262 (1980) 551-563. | Zbl | MR
[37] , Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 125 (1993) 225-246. | Zbl | MR
[38] L. Giacomelli, H. Knüpfer, Flat data solutions to the thin film equation do not rupture, Preprint SFB 611, n. 283, 2006.
[39] , , Variational formulation for the lubrication approximation of the Hele-Shaw flow, Calc. Var. Partial Differential Equations 13 (2001) 377-404. | Zbl | MR
[40] , , Rigorous lubrication approximation, Interfaces Free Bound 5 (2003) 483-529. | Zbl | MR
[41] U. Gianazza, G. Savaré, G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Preprint at http://www.imati.cnr.it/~savare/pubblicazioni/preprints.html. | MR
[42] J. Graveleau, Quelques solutions auto-semblables pour l'équation dela chaleur non-linéaire, Rapport Interne C.E.A., 1972.
[43] A. Jüngel, D. Matthes, The Derrida-Lebowitz-Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions, SIAM J. Math. Anal. (2007), in press. | Zbl
[44] , , Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal. 32 (2000) 760-777. | Zbl | MR
[45] , , Sharp decay rates for the fastest conservative diffusions, C. R. Acad. Sci. Paris, Ser. I 341 (2005) 157-162. | Zbl | MR
[46] , , Potential theory and optimal convergence rates in fast nonlinear diffusion, J. Math Pures Appl. 86 (2006) 42-67. | Zbl | MR
[47] , Exact multidimensional solutions to some nonlinear diffusion equations, Quart. J. Mech. Appl. Math. 46 (1993) 419-436. | Zbl | MR
[48] , , Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differential Equations 95 (2002) 1-29. | Zbl | MR
[49] , , Analysis, American Mathematical Society, Providence, RI, 1997. | Zbl | MR
[50] , , Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not. 24947 (2006) 1-22. | Zbl | MR
[51] , Thin films with high surface tension, SIAM Rev. 40 (1998) 441-462. | Zbl | MR
[52] , , , Long-scale evolution of thin liquid films, Rev. Modern Phys. 69 (1997) 931-980.
[53] , Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations 23 (1998) 2077-2164. | Zbl | MR
[54] , The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001) 101-174. | Zbl | MR
[55] , Diffusion from an instantaneous point source with concentration dependent coefficient, Quart. J. Mech. Appl. Math. 12 (1959) 407-409. | Zbl | MR
[56] , Exact multidimensional solutions of the nonlinear diffusion equation, J. Appl. Mech. Tech. Phys. 36 (1995) 169-176. | Zbl | MR
[57] , , The construction of exact solutions of the multi-dimensional quasilinear heat-conduction equation, Comp. Math. Math. Phys. 33 (1993) 1087-1097. | Zbl | MR
[58] , , Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J. 54 (2005) 1697-1738. | Zbl | MR
[59] L. Tartar, Solutions particulières de et comportement asymptotique, Unpublished, 1986.
[60] , A central limit theorem for solutions of the porous medium equation, J. Evol. Equ. 5 (2005) 185-203. | Zbl | MR
[61] , A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl. 143 (4) (1986) 385-400. | Zbl | MR
[62] , Asymptotic behaviour and propagation of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983) 507-527. | Zbl | MR
[63] , An introduction to the mathematical theory of the porous medium equation, in: Shape Optimization and Free Boundaries, Montreal, PQ, 1990, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 380, Kluwer Acad. Publ., 1992, pp. 347-389. | Zbl | MR
[64] , Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ. 3 (2003) 67-118. | Zbl | MR
[65] , The Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. | Zbl | MR
[66] , Ordinary Differential Equations, Translated from the Sixth German (1996) Edition by Russell Thompson, Springer-Verlag, New York, 1998. | Zbl | MR
[67] , , The asymptotic properties of self-modelling solutions of the nonstationary gas filtration equations, Sov. Phys. Doklady 3 (1989) 44-47.
[68] , , Theory of heat transfer with temperature dependent thermal conductivity, in: Collection in Honour of the 70th Birthday of Academician A.F. Ioffe, Izdat. Akad. Nauk. SSSR, Moscow, 1950, pp. 61-71.
[69] , , Investigation of polynomial solutions of the two-dimensional Leibenzon filtration equation with an integer adiabatic exponent, in: , (Eds.), Approximate Methods for Solving Boundary Value Problems of Continuum Mechanics, vol. 91, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1985, pp. 64-70, (in Russian). | MR
Cité par Sources :






