A characterization of convex calibrable sets in R N with respect to anisotropic norms
Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 4, p. 803-832
@article{AIHPC_2008__25_4_803_0,
     author = {Caselles, V. and Chambolle, A. and Moll, S. and Novaga, M.},
     title = {A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {25},
     number = {4},
     year = {2008},
     pages = {803-832},
     doi = {10.1016/j.anihpc.2008.04.003},
     zbl = {1144.52002},
     mrnumber = {2436794},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2008__25_4_803_0}
}
Caselles, V.; Chambolle, A.; Moll, S.; Novaga, M. A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 4, pp. 803-832. doi : 10.1016/j.anihpc.2008.04.003. http://www.numdam.org/item/AIHPC_2008__25_4_803_0/

[1] F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Preprint CVGMT, Scuola Normale di Pisa, 2007. | MR 2358032 | Zbl 1167.52005

[2] Alter F., Caselles V., Chambolle A., A characterization of convex calibrable sets in R N , Math. Ann. 332 (2) (2005) 329-366. | MR 2178065 | Zbl 1108.35073

[3] Alter F., Caselles V., Chambolle A., Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, Interfaces Free Bound. 7 (1) (2005) 29-53. | MR 2126142 | Zbl 1084.49003

[4] Amar M., Bellettini G., A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1) (1994) 91-133. | Numdam | MR 1259102 | Zbl 0842.49016

[5] Ambrosio L., Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995) 191-246. | MR 1387558 | Zbl 0957.49029

[6] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. | MR 1857292 | Zbl 0957.49001

[7] Andreu F., Ballester C., Caselles V., Mazón J.M., The Dirichlet problem for the total variation flow, J. Funct. Anal. 180 (2) (2001) 347-403. | MR 1814993 | Zbl 0973.35109

[8] Andreu F., Caselles V., Mazón J.M., A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana 18 (1) (2002) 135-185. | MR 1924690 | Zbl 1010.35063

[9] Andreu-Vaillo F., Caselles V., Mazón J.M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, vol. 223, Birkhäuser Verlag, Basel, 2004. | MR 2033382 | Zbl 1053.35002

[10] Anzellotti G., Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1984) 293-318, 1983. | MR 750538 | Zbl 0572.46023

[11] Atkinson F.V., Peletier L.A., Bounds for vertical points of solutions of prescribed mean curvature type equations. I, Proc. Roy. Soc. Edinburgh Sect. A 112 (1-2) (1989) 15-32. | MR 1007535 | Zbl 0685.35022

[12] Barozzi E., The curvature of a set with finite area, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (2) (1994) 149-159. | MR 1292570 | Zbl 0809.49038

[13] Bellettini G., Caselles V., Chambolle A., Novaga M., Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal. 179 (1) (2006) 109-152. | MR 2208291 | Zbl 1148.53049

[14] Bellettini G., Caselles V., Novaga M., The total variation flow in R N , J. Differential Equations 184 (2) (2002) 475-525. | MR 1929886 | Zbl 1036.35099

[15] Bellettini G., Novaga M., Approximation and comparison for nonsmooth anisotropic motion by mean curvature in R N , Math. Models Methods Appl. Sci. 10 (1) (2000) 1-10. | MR 1749692 | Zbl 1016.53048

[16] Bellettini G., Novaga M., Paolini M., Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces Free Bound. 1 (1) (1999) 39-55. | MR 1865105 | Zbl 0934.49023

[17] Bellettini G., Novaga M., Paolini M., Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound. 3 (4) (2001) 415-446. | MR 1869587 | Zbl 0989.35127

[18] Bellettini G., Novaga M., Paolini M., On a crystalline variational problem. I. First variation and global L regularity, Arch. Ration. Mech. Anal. 157 (3) (2001) 165-191. | MR 1826964 | Zbl 0976.58016

[19] Bellettini G., Novaga M., Paolini M., On a crystalline variational problem. II. BV regularity and structure of minimizers on facets, Arch. Ration. Mech. Anal. 157 (3) (2001) 193-217. | MR 1826965 | Zbl 0976.58017

[20] Bellettini G., Paolini M., Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (3) (1996) 537-566. | MR 1416006 | Zbl 0873.53011

[21] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, vol. 5, North-Holland Publishing Co., Amsterdam, 1973, Notas de Matemática (50). | MR 348562 | Zbl 0252.47055

[22] Brézis H., Kinderlehrer D., The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/1974) 831-844. | MR 361436 | Zbl 0278.49011

[23] Caselles V., Chambolle A., Anisotropic curvature-driven flow of convex sets, Nonlinear Anal. 65 (8) (2006) 1547-1577. | MR 2248685 | Zbl 1107.35069

[24] Caselles V., Chambolle A., Novaga M., Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (1) (2007) 77-90. | MR 2358032 | Zbl pre05366256

[25] Chambolle A., An algorithm for mean curvature motion, Interfaces Free Bound. 6 (2) (2004) 195-218. | MR 2079603 | Zbl 1061.35147

[26] Chambolle A., An algorithm for total variation minimization and applications, J. Math. Imaging Vision 20 (1-2) (2004) 89-97, Special issue on mathematics and image analysis. | MR 2049783

[27] Giusti E., On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math. 46 (2) (1978) 111-137. | MR 487722 | Zbl 0381.35035

[28] Gonzalez E.H.A., Massari U., Variational mean curvatures, Rend. Sem. Mat. Univ. Politec. Torino 52 (1) (1994) 1-28. | MR 1289900 | Zbl 0819.49025

[29] Kawohl B., Fridman V., Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (4) (2003) 659-667. | MR 2062882 | Zbl 1105.35029

[30] Kawohl B., Lachand-Robert T., Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (1) (2006) 103-118. | MR 2233727 | Zbl 1133.52002

[31] Korevaar N., Capillary surface convexity above convex domains, Indiana Univ. Math. J. 32 (1) (1983) 73-81. | MR 684757 | Zbl 0481.35023

[32] Korevaar N., Simon L., Equations of mean curvature type with contact angle boundary conditions, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 175-201. | MR 1449407 | Zbl 0932.35091

[33] Lichnewsky A., Temam R., Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations 30 (3) (1978) 340-364. | MR 521858 | Zbl 0368.49016

[34] Meyer Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, American Mathematical Society, Providence, RI, 2001, The fifteenth Dean Jacqueline B. Lewis memorial lectures. | MR 1852741 | Zbl 0987.35003

[35] Moll J.S., The anisotropic total variation flow, Math. Ann. 332 (1) (2005) 177-218. | MR 2139257 | Zbl 1109.35061

[36] Rosales C., Isoperimetric regions in rotationally symmetric convex bodies, Indiana Univ. Math. J. 52 (5) (2003) 1201-1214. | MR 2010323 | Zbl 1088.53039

[37] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. | MR 1216521 | Zbl 0798.52001

[38] Simon L., Spruck J., Existence and regularity of a capillary surface with prescribed contact angle, Arch. Ration. Mech. Anal. 61 (1) (1976) 19-34. | MR 487724 | Zbl 0361.35014

[39] Stredulinsky E., Ziemer W.P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal. 7 (4) (1997) 653-677. | MR 1669207 | Zbl 0940.49025