@article{AIHPC_2008__25_2_303_0,
author = {Ozawa, Tohru and Zhai, Jian},
title = {Global existence of small classical solutions to nonlinear {Schr\"odinger} equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {303--311},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {2},
doi = {10.1016/j.anihpc.2006.11.010},
mrnumber = {2396524},
zbl = {1143.35370},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/}
}
TY - JOUR AU - Ozawa, Tohru AU - Zhai, Jian TI - Global existence of small classical solutions to nonlinear Schrödinger equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 303 EP - 311 VL - 25 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/ DO - 10.1016/j.anihpc.2006.11.010 LA - en ID - AIHPC_2008__25_2_303_0 ER -
%0 Journal Article %A Ozawa, Tohru %A Zhai, Jian %T Global existence of small classical solutions to nonlinear Schrödinger equations %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 303-311 %V 25 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/ %R 10.1016/j.anihpc.2006.11.010 %G en %F AIHPC_2008__25_2_303_0
Ozawa, Tohru; Zhai, Jian. Global existence of small classical solutions to nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 303-311. doi: 10.1016/j.anihpc.2006.11.010
[1] , Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, 2003. | Zbl | MR
[2] , , , Schrödinger maps, Comm. Pure Appl. Math. 53 (2003) 590-602. | Zbl | MR
[3] , Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. RIMS 31 (5) (1995) 731-753. | Zbl | MR
[4] , The initial value problem for cubic semilinear Schrödinger equations, Publ. RIMS 32 (3) (1996) 445-471. | Zbl | MR
[5] , Introduction aux équations de Schrödinger non linéaires, Paris Onze Edition, Université Paris-Sud, 1998, L161.
[6] , , Local existence in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc. 40 (1997) 563-581. | Zbl | MR
[7] , , Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations, SUT J. Math. 34 (1998) 111-137. | Zbl | MR
[8] , , , Global existence of small solutions to the generalized derivative nonlinear Schrödinger equations, Asymptotic Anal. 21 (1999) 133-147. | Zbl | MR
[9] , , Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations 7 (1994) 453-461. | Zbl | MR
[10] , , Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformation, Differential Integral Equations 8 (1995) 1061-1072. | Zbl | MR
[11] , Existence and uniqueness of the solution to the modified Schrödinger map, Math. Res. Lett. 12 (2-3) (2005) 171-186. | Zbl | MR
[12] , Nonlinear Schrödinger equations, in: , (Eds.), Schrödinger Operators, Lecture Notes in Physics, vol. 345, Springer-Verlag, Berlin, 1989, pp. 218-263. | Zbl | MR
[13] , , Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988) 891-907. | Zbl | MR
[14] , , Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math. 121 (3) (1999) 629-669. | Zbl | MR
[15] , , , , The Cauchy problem for Schrödinger flows into Kähler manifolds, arXiv:, math.AP/0511701 v1.
[16] , , , Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (3) (1993) 255-288. | Zbl | MR | Numdam
[17] , , , Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134 (3) (1998) 489-545. | Zbl | MR
[18] , Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal. 78 (1) (1982) 73-98. | Zbl | MR
[19] , Weighted and estimates for solutions to the classical wave equation in three space dimensions, Comm. Pure Appl. Math. 37 (2) (1984) 269-288. | Zbl | MR
[20] , , Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1) (1983) 133-141. | Zbl | MR
[21] , , On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (2) (1995) 357-426. | Zbl | MR
[22] , , , Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann. 322 (3) (2002) 603-621. | Zbl | MR
[23] , , , Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana 19 (1) (2003) 179-194. | Zbl | MR
[24] , , , On Schrödinger maps, Comm. Pure Appl. Math. 56 (1) (2003) 114-151. | Zbl | MR
[25] , , Small data scattering for nonlinear Schrödinger, wave and Klein-Gordon equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002) 435-460. | Zbl | MR | Numdam
[26] , Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac. 41 (3) (1998) 451-468. | Zbl | MR
[27] , Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac. 38 (2) (1995) 217-232. | Zbl | MR
[28] , Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (3) (1982) 409-425. | Zbl | MR
[29] , , Schrödinger maps and anti-ferromagnetic chains, Comm. Math. Phys. 262 (2) (2006) 299-315. | Zbl | MR
[30] , The Cauchy problem for the Ishimori equations, J. Funct. Anal. 105 (2) (1992) 233-255. | Zbl | MR
[31] , , The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. | Zbl | MR
[32] , Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension, Hokkaido Math. J. 30 (2) (2001) 451-473. | Zbl | MR
Cité par Sources :





