@article{AIHPC_2008__25_2_219_0,
author = {Horsin, Thierry},
title = {Local exact lagrangian controllability of the {Burgers} viscous equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {219--230},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {2},
doi = {10.1016/j.anihpc.2006.11.009},
mrnumber = {2396520},
zbl = {1145.35330},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.009/}
}
TY - JOUR AU - Horsin, Thierry TI - Local exact lagrangian controllability of the Burgers viscous equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 219 EP - 230 VL - 25 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.009/ DO - 10.1016/j.anihpc.2006.11.009 LA - en ID - AIHPC_2008__25_2_219_0 ER -
%0 Journal Article %A Horsin, Thierry %T Local exact lagrangian controllability of the Burgers viscous equation %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 219-230 %V 25 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.009/ %R 10.1016/j.anihpc.2006.11.009 %G en %F AIHPC_2008__25_2_219_0
Horsin, Thierry. Local exact lagrangian controllability of the Burgers viscous equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 219-230. doi: 10.1016/j.anihpc.2006.11.009
[1] , , On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim. 36 (1) (1998) 290-312. | Zbl | MR
[2] , , Two-dimensional local null controllability of a rigid structure in a Navier-Stokes fluid, C. R. Acad. Sci. Paris, Ser. I 343 (2) (2006) 105-109. | Zbl | MR
[3] H. Brezis, T. Cazenave, Semilinear Evolution Equations and Applications in Mechanics and Physics, Pitman Lecture Notes, Addison-Wesley, Reading MA, in press.
[4] , , Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955. | Zbl | MR
[5] , , , Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (5-6) (2000) 1019-1042. | Zbl | MR
[6] J.-M. Coron, Control and nonlinearity, in preparation. | Zbl
[7] , Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris 317 (1993) 271-276. | Zbl | MR
[8] , On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var. 1 (1995/1996) 35-75, (electronic). | Zbl | MR | Numdam
[9] , Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var. 8 (2002) 513-554, A tribute to J.L. Lions. | Zbl | MR | Numdam
[10] , , Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim. 43 (2) (2004) 549-569, (electronic). | Zbl | MR
[11] , , On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 (7-8) (2000) 1399-1413. | Zbl | MR
[12] , , Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | Zbl | MR
[13] , , Some control results for simplified one-dimensional models of fluid-solid interaction, Math. Models Methods Appl. Sci. 15 (5) (2005) 783-824. | Zbl | MR
[14] , , , Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 125 (1) (1995) 31-61. | Zbl | MR
[15] , , Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal. 43 (1971) 272-292. | Zbl | MR
[16] , , Remarks on the controllability of the Burgers equation, C. R. Acad. Sci. Paris, Ser. I 341 (2005) 229-232. | Zbl | MR
[17] , , , , Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (12) (2004) 1501-1542. | MR
[18] , , Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. | Zbl | MR
[19] , , Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. | Zbl | MR
[20] S. Guerrero, O.Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces (2006), submitted for publication. | MR | Numdam
[21] , Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. | Zbl | MR
[22] , On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var. 3 (1998) 83-95, (electronic). | Zbl | MR | Numdam
[23] , Application of the exact null controllability of the heat equation to moving sets, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 849-852. | Zbl | MR
[24] , On exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 3 (1998) 97-131, (electronic). | Zbl | MR | Numdam
[25] , Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001) 39-72, (electronic). | Zbl | MR | Numdam
[26] , , , Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods, in: Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong, 2002, Contemp. Math., vol. 330, Amer. Math. Soc., Providence, RI, 2003, pp. 133-153. | Zbl | MR
[27] , , Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations 20 (1-2) (1995) 335-356. | Zbl | MR
[28] H. Maillot, E. Zuazua, Mouvement d'une particule dans un fluide, Prepublication, 1999.
[29] , , Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control 49 (5) (2004) 745-747. | MR
[30] , Variational assimilation of Lagrangian data in oceanography, Inverse Problems 22 (1) (2006) 245-263. | Zbl | MR
[31] A. Osses, Quelques méthodes théoriques et numériques de contrôlabilité et problèmes d'interactions fluide-structure, PhD thesis, Ecole Polytechnique, Paris, 1998.
[32] , Deterministic finite-dimensional systems, in: Mathematical Control Theory, second ed., Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998, pp. xvi+531. | Zbl | MR
[33] , , Lack of collision in a simplified 1D model for fluid-solid interaction, Math. Models Methods Appl. Sci. 16 (5) (2006) 637-678. | MR
Cité par Sources :






