Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity
Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, p. 201-213
@article{AIHPC_2008__25_1_201_0,
     author = {Sivaloganathan, Jeyabal and Spector, Scott J.},
     title = {Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {25},
     number = {1},
     year = {2008},
     pages = {201-213},
     doi = {10.1016/j.anihpc.2006.11.013},
     zbl = {1137.74011},
     mrnumber = {2383087},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2008__25_1_201_0}
}
Sivaloganathan, Jeyabal; Spector, Scott J. Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, pp. 201-213. doi : 10.1016/j.anihpc.2006.11.013. http://www.numdam.org/item/AIHPC_2008__25_1_201_0/

[1] Almgren F., Browder W., Lieb E.H., Co-area, liquid crystals, and minimal surfaces, in: Partial Differential Equations, Tianjin, 1986, Lecture Notes in Math., vol. 1306, Springer, 1988, pp. 1-22. | MR 1032767 | Zbl 0645.58015

[2] Avellaneda M., Lin F.H., Fonctions quasi affines et minimisation de u p , C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 355-358. | MR 934618

[3] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. | MR 475169 | Zbl 0368.73040

[4] Ball J.M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. A 306 (1982) 557-611. | MR 703623 | Zbl 0513.73020

[5] Ball J.M., Marsden J.E., Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch. Rational Mech. Anal. 86 (1984) 251-277. | MR 751509 | Zbl 0552.73006

[6] Ball J.M., Murat F., W 1,p -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225-253. | MR 759098 | Zbl 0549.46019

[7] Bishop R.F., Hill R., Mott N.F., The theory of indentation and hardness tests, Proc. Phys. Soc. 57 (1945) 147-159.

[8] Brezis H., Coron J.-M., Lieb E.H., Harmonic maps with defects, Comm. Math. Phys. 107 (1986) 649-705. | MR 868739 | Zbl 0608.58016

[9] Conti S., De Lellis C., Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (5) (2003) 521-549. | Numdam | MR 2020859 | Zbl 1114.74004

[10] Coron J.-M., Gulliver R.D., Minimizing p-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989) 82-100. | MR 1018054 | Zbl 0677.58021

[11] Gent A.N., Lindley P.B., Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. Lond. A 249 (1958) 195-205.

[12] Hardt R.M., Singularities of harmonic maps, Bull. Amer. Math. Soc. 34 (1997) 15-34. | MR 1397098 | Zbl 0871.58026

[13] Hardt R., Lin F.H., Wang C.Y., The p-energy minimality of x/x, Comm. Anal. Geom. 6 (1998) 141-152. | MR 1619840 | Zbl 0922.58015

[14] Hill R.J., The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950. | MR 37721 | Zbl 0041.10802

[15] Hong M.-C., On the minimality of the p-harmonic map x x:B n S n-1 , Calc. Var. Partial Differential Equations 13 (2001) 459-468. | MR 1867937 | Zbl 0999.58009

[16] Horgan C.O., Polignone D.A., Cavitation in nonlinearly elastic solids: A review, Appl. Mech. Rev. 48 (1995) 471-485.

[17] Jäger W., Kaul H., Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983) 146-161. | MR 705882 | Zbl 0516.35032

[18] James R.D., Spector S.J., The formation of filamentary voids in solids, J. Mech. Phys. Solids 39 (1991) 783-813. | MR 1120242 | Zbl 0761.73020

[19] James R.D., Spector S.J., Remarks on W 1,p -quasiconvexity, interpenetration of matter and function spaces for elasticity, Anal. Non Linéaire 9 (1992) 263-280. | Numdam | MR 1168303 | Zbl 0773.73022

[20] Lin F.H., A remark on the map x/x, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 529-531. | MR 916327 | Zbl 0652.58022

[21] Meyers N.G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119 (1965) 125-149. | MR 188838 | Zbl 0166.38501

[22] Meynard F., Existence and nonexistence results on the radially symmetric cavitation problem, Quart. Appl. Math. 50 (1992) 201-226. | MR 1162272 | Zbl 0755.73027

[23] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | MR 54865 | Zbl 0046.10803

[24] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. | MR 202511 | MR 2492985 | Zbl 0142.38701

[25] Müller S., Spector S.J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal. 131 (1995) 1-66. | MR 1346364 | Zbl 0836.73025

[26] Šilhavý M., The Mechanics and Thermodynamics of Continuous Media, Springer, 1997. | MR 1423807 | Zbl 0870.73004

[27] Sivaloganathan J., Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rational Mech. Anal. 96 (1986) 97-136. | MR 853969 | Zbl 0628.73018

[28] Sivaloganathan J., Spector S.J., On the existence of minimizers with prescribed singular points in nonlinear elasticity, J. Elasticity 59 (2000) 83-113. | MR 1833327 | Zbl 0987.74016

[29] Stuart C.A., Radially symmetric cavitation for hyperelastic materials, Anal. Non Linéaire 2 (1985) 33-66. | Numdam | MR 781591 | Zbl 0588.73021