@article{AIHPC_2008__25_1_135_0,
author = {Anza Hafsa, Omar and Mandallena, Jean-Philippe},
title = {Relaxation theorems in nonlinear elasticity},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {135--148},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {1},
doi = {10.1016/j.anihpc.2006.11.005},
mrnumber = {2383082},
zbl = {1131.74005},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.005/}
}
TY - JOUR AU - Anza Hafsa, Omar AU - Mandallena, Jean-Philippe TI - Relaxation theorems in nonlinear elasticity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 135 EP - 148 VL - 25 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.005/ DO - 10.1016/j.anihpc.2006.11.005 LA - en ID - AIHPC_2008__25_1_135_0 ER -
%0 Journal Article %A Anza Hafsa, Omar %A Mandallena, Jean-Philippe %T Relaxation theorems in nonlinear elasticity %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 135-148 %V 25 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.11.005/ %R 10.1016/j.anihpc.2006.11.005 %G en %F AIHPC_2008__25_1_135_0
Anza Hafsa, Omar; Mandallena, Jean-Philippe. Relaxation theorems in nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 1, pp. 135-148. doi: 10.1016/j.anihpc.2006.11.005
[1] , , Relaxation of variational problems in two-dimensional nonlinear elasticity, Ann. Mat. Pura Appl. 186 (2007) 187-198. | MR
[2] , , The nonlinear membrane energy: variational derivation under the constraint “”, J. Math. Pures Appl. 86 (2006) 100-115. | Zbl | MR
[3] O. Anza Hafsa, J.-P. Mandallena, The nonlinear membrane energy: variational derivation under the constraint “”, submitted for publication.
[4] , , -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225-253. | Zbl | MR
[5] , Relaxation of singular functionals defined on Sobolev spaces, ESAIM Control Optimal Calc. Var. 5 (2000) 71-85. | Zbl | MR | Numdam
[6] , Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman Res., Notes Math. Ser., vol. 207, Longman, Harlow, 1989. | Zbl
[7] , , Unbounded Functionals in the Calculus of Variations: Representation, Relaxation and Homogenization, Chapman & Hall/CRC, 2001. | Zbl | MR
[8] , Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal. 46 (1982) 102-118. | Zbl | MR
[9] , Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. | Zbl | MR
[10] , , Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris, 1974. | Zbl | MR
[11] , The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl. 67 (1988) 175-195. | Zbl | MR
[12] , , Mathematical Foundations of Elasticity, Prentice-Hall, 1983. | Zbl
[13] , Quasiconvexity and lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | Zbl | MR
Cité par Sources :






