Monotonicity properties for ground states of the scalar field equation
Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, p. 105-119
@article{AIHPC_2008__25_1_105_0,
     author = {Felmer, Patricio L. and Quaas, Alexander and Tang, Moxun and Yu, Jianshe},
     title = {Monotonicity properties for ground states of the scalar field equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {25},
     number = {1},
     year = {2008},
     pages = {105-119},
     doi = {10.1016/j.anihpc.2006.12.003},
     zbl = {1136.35032},
     mrnumber = {2383080},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2008__25_1_105_0}
}
Felmer, Patricio L.; Quaas, Alexander; Tang, Moxun; Yu, Jianshe. Monotonicity properties for ground states of the scalar field equation. Annales de l'I.H.P. Analyse non linéaire, Volume 25 (2008) no. 1, pp. 105-119. doi : 10.1016/j.anihpc.2006.12.003. http://www.numdam.org/item/AIHPC_2008__25_1_105_0/

[1] Berestycki H., Lions P.L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313-345. | MR 695535 | Zbl 0533.35029

[2] Chen C.C., Lin C.S., Uniqueness of the ground state solutions of Δu+fu=0 in R n , n3, Comm. Partial Differential Equations 16 (1991) 1549-1572. | MR 1132797 | Zbl 0753.35034

[3] Coffman C., On the positive solutions of boundary problems for a class of nonlinear differential equations, J. Differential Equations 3 (1967) 92-111. | MR 204755 | Zbl 0152.08603

[4] Cortázar C., Elgueta M., Felmer P., Uniqueness of positive solutions of Δu+fu=0 in R N , N3, Arch. Rational Mech. Anal. 142 (1998) 127-141. | MR 1629650 | Zbl 0912.35059

[5] Felmer P.L., Quaas A., On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 843-865. | Numdam | MR 1995504 | Zbl pre01975936

[6] Felmer P., Quaas A., Tang M., On uniqueness for a nonlinear elliptic equation involving the Pucci's extremal operator, J. Differential Equations 226 (2006) 80-98. | MR 2232430 | Zbl pre05042300

[7] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R n , in: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., vol. 7a, Academic Press, New York, 1981, pp. 369-402. | MR 634248 | Zbl 0469.35052

[8] Kwong M.K., Uniqueness of positive solutions of Δu-u+u p =0 in R n , Arch. Rational Mech. Anal. 105 (1989) 243-266. | MR 969899 | Zbl 0676.35032

[9] Kwong M.K., Zhang L., Uniqueness of the positive solution of Δu+fu=0 in an annulus, Differential Integral Equations 4 (1991) 583-596. | MR 1097920 | Zbl 0724.34023

[10] Mcleod K., Serrin J., Uniqueness of positive radial solutions of Δu+fu=0 in R n , Arch. Rational Mech. Anal. 99 (1987) 115-145. | MR 886933 | Zbl 0667.35023

[11] Mcleod K., Uniqueness of positive radial solutions of Δu+fu=0 in R n , II, Trans. Amer. Math. Soc. 339 (1993) 495-505. | MR 1201323 | Zbl 0804.35034

[12] Ni W.M., Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations 50 (1983) 289-304. | MR 719451 | Zbl 0476.35033

[13] Ni W.M., Nussbaum R., Uniqueness of nonuniqueness for positive radial solutions of Δu+f(u,r)=0, Comm. Pure Appl. Math. 38 (1985) 67-108. | MR 768105 | Zbl 0581.35021

[14] Peletier L.A., Serrin J., Uniqueness of positive solutions of semilinear equations in R N , Arch. Rational Mech. Anal. 81 (1983) 181-197. | MR 682268 | Zbl 0516.35031

[15] Peletier L.A., Serrin J., Uniqueness of non-negative of semilinear equations in R N , solutions of semilinear equations in R N , J. Differential Equations 61 (1986) 380-397. | MR 829369 | Zbl 0577.35035

[16] Pohozaev S.I., On the eigenfunctions of the equation Δu+λfu=0, Dokl. Akad. Nauk SSSR 165 (1965) 36-39, (in Russian). | MR 192184 | Zbl 0141.30202

[17] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (2000) 897-923. | MR 1803216 | Zbl 0979.35049

[18] Tang M., Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations, Comm. Partial Differential Equations 26 (2001) 909-938. | MR 1843289 | Zbl 1010.35044

[19] Tang M., Uniqueness of positive radial solutions for Δu-u+u p =0 on an annulus, J. Differential Equations 189 (2003) 148-160. | MR 1968317 | Zbl 1158.35366

[20] Tang M., Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 705-717. | MR 1983694 | Zbl 1086.35053