@article{AIHPC_2007__24_3_471_0,
author = {Fura, Justyna and Rybicki, S{\l}awomir},
title = {Periodic solutions of second order hamiltonian systems bifurcating from infinity},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {471--490},
year = {2007},
publisher = {Elsevier},
volume = {24},
number = {3},
doi = {10.1016/j.anihpc.2006.03.003},
zbl = {1129.37034},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/}
}
TY - JOUR AU - Fura, Justyna AU - Rybicki, Sławomir TI - Periodic solutions of second order hamiltonian systems bifurcating from infinity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 471 EP - 490 VL - 24 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/ DO - 10.1016/j.anihpc.2006.03.003 LA - en ID - AIHPC_2007__24_3_471_0 ER -
%0 Journal Article %A Fura, Justyna %A Rybicki, Sławomir %T Periodic solutions of second order hamiltonian systems bifurcating from infinity %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 471-490 %V 24 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/ %R 10.1016/j.anihpc.2006.03.003 %G en %F AIHPC_2007__24_3_471_0
Fura, Justyna; Rybicki, Sławomir. Periodic solutions of second order hamiltonian systems bifurcating from infinity. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 471-490. doi: 10.1016/j.anihpc.2006.03.003
[1] , Lectures on Lie Groups, W.A. Benjamin, New York, 1969. | Zbl | MR
[2] , Branching points for a class of variational operators, J. Anal. Math. 76 (1998) 321-335. | Zbl | MR
[3] , Die Lösung der Versweigungsgleichungen für Nichtlineare Eigenwert-Probleme, Math. Z. 127 (1972) 105-126. | MR
[4] , A Topological Introduction to Nonlinear Analysis, Birkhäuser Boston, Boston, MA, 2004. | Zbl | MR
[5] , A new degree for -invariant mappings and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (5) (1985) 473-486. | Zbl | MR | Numdam
[6] , Transformation Groups, Walter de Gruyter, Berlin, 1987. | Zbl | MR
[7] , , , Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Differential Equations 218 (1) (2005) 216-252. | Zbl | MR
[8] , Degree for gradient equivariant maps and equivariant Conley index, in: , (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser, 1997, pp. 247-272. | Zbl
[9] , Hopf bifurcations at infinity, Nonlinear Anal. TMA 13 (12) (1989) 1393-1398. | Zbl | MR
[10] , Topological bifurcation, in: , (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser, Basel, 1995, pp. 341-463. | Zbl | MR
[11] , , Global Bifurcations in Variational Inequalities, Springer-Verlag, New York, 1997. | Zbl | MR
[12] , Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear Anal. TMA 42 (1) (2000) 27-39. | Zbl | MR
[13] , , , Periodic trajectories near degenerate equilibria in the Hénon-Heiles and Yang-Mills Hamiltonian systems, J. Dynam. Differential Equations 17 (3) (2005) 475-488. | Zbl
[14] , Periodic solutions of the Liénard equation: bifurcation from infinity and nonuniqueness, Rend. Istit. Mat. Univ. Trieste 19 (1) (1987) 12-31. | Zbl | MR
[15] , La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari 132 (1977). | Zbl | MR
[16] , Symmetries, topological degree and a theorem of Z.Q. Wang, Rocky Mountain J. Math. 24 (3) (1994) 1087-1115. | Zbl | MR
[17] , Degenerate branching points of autonomous Hamiltonian systems, Nonlinear Anal. TMA 55 (1-2) (2003) 153-166. | Zbl
[18] , , Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems, J. Differential Equations 202 (2) (2004) 284-305. | Zbl | MR
[19] , -degree for orthogonal maps and its applications to bifurcation theory, Nonlinear Anal. TMA 23 (1) (1994) 83-102. | Zbl | MR
[20] , Applications of degree for -equivariant gradient maps to variational nonlinear problems with -symmetries, Topol. Methods Nonlinear Anal. 9 (2) (1997) 383-417. | Zbl | MR
[21] , Degree for equivariant gradient maps, Milan J. Math. 73 (2005) 103-144. | Zbl | MR
[22] , Bifurcations of solutions of -symmetric nonlinear problems with variational structure, in: , , , (Eds.), Handbook of Topological Fixed Point Theory, Springer, Berlin, 2005, pp. 339-372. | Zbl | MR
[23] , Hopf bifurcation from infinity, Rend. Sem. Mat. Univ. Padova 78 (1987) 237-253. | Zbl | MR | Numdam
[24] , Successive bifurcations at infinity for second order O.D.E.'s, Qual. Theory Dynam. Syst. 3 (2) (2002) 1-17. | Zbl | MR
[25] , Some remarks on the Böhme-Berger bifurcation theorem, Math. Z. 125 (1972) 359-364. | Zbl
Cité par Sources :





