@article{AIHPC_2007__24_2_207_0,
author = {Demoulini, Sophia},
title = {Global existence for a nonlinear {Schroedinger-Chern-Simons} system on a surface},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {207--225},
year = {2007},
publisher = {Elsevier},
volume = {24},
number = {2},
doi = {10.1016/j.anihpc.2006.01.004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/}
}
TY - JOUR AU - Demoulini, Sophia TI - Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 207 EP - 225 VL - 24 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/ DO - 10.1016/j.anihpc.2006.01.004 LA - en ID - AIHPC_2007__24_2_207_0 ER -
%0 Journal Article %A Demoulini, Sophia %T Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 207-225 %V 24 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/ %R 10.1016/j.anihpc.2006.01.004 %G en %F AIHPC_2007__24_2_207_0
Demoulini, Sophia. Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 2, pp. 207-225. doi: 10.1016/j.anihpc.2006.01.004
[1] , Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Springer-Verlag, New York, 1980. | Zbl
[2] , , , Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrodinger equation, Nonlinearity 8 (1995) 235-253. | Zbl
[3] , , , Collapse of Chern-Simons-gauged matter fields, Phys. Rev. Lett. 74 (1995) 3907-3911. | Zbl
[4] , , Nonlinear Schroedinger evolution equations, Nonlinear Anal. 4 (4) (1980) 677-681. | Zbl | MR
[5] , , Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory, Nonlinearity 15 (2002) 747-758. | Zbl
[6] , , Gradient flow of the superconducting Ginzburg-Landau functional on the plane, Comm. Anal. Geom. 5 (1) (1997) 121-198. | Zbl
[7] , Periodic solutions and rigid rotation of the gauged Ginzburg-Landau vortices, in: (Berlin, 1999), International Conference on Differential Equations, vols. 1, 2, World Sci. Publishing, River Edge, NJ, 2000, pp. 542-544. | Zbl
[8] , Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970) 241-258. | Zbl
[9] , Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, 1984. | Zbl | MR
[10] , First order vortex dynamics, Ann. Phys. 256 (1997) 114-131. | Zbl | MR
[11] , Foundations of Global Nonlinear Analysis, Mathematics Lecture Note Series, W.A. Benjamin, New York, 1968. | Zbl | MR
[12] , Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Comm. Math. Phys. 159 (1994) 51-91. | Zbl | MR
[13] , Periodic solutions of the Abelian Higgs model and rigid rotation of vortices, Geom. Funct. Anal. (GAFA) 9 (1999) 1-28. | Zbl | MR
[14] , Partial Differential Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, 1996. | Zbl | MR
Cité par Sources :





