@article{AIHPC_2007__24_1_139_0,
author = {Ortega, Jaime and Rosier, Lionel and Takahashi, Tak\'eo},
title = {On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {139--165},
year = {2007},
publisher = {Elsevier},
volume = {24},
number = {1},
doi = {10.1016/j.anihpc.2005.12.004},
mrnumber = {2286562},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.12.004/}
}
TY - JOUR AU - Ortega, Jaime AU - Rosier, Lionel AU - Takahashi, Takéo TI - On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 139 EP - 165 VL - 24 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.12.004/ DO - 10.1016/j.anihpc.2005.12.004 LA - en ID - AIHPC_2007__24_1_139_0 ER -
%0 Journal Article %A Ortega, Jaime %A Rosier, Lionel %A Takahashi, Takéo %T On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 139-165 %V 24 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.12.004/ %R 10.1016/j.anihpc.2005.12.004 %G en %F AIHPC_2007__24_1_139_0
Ortega, Jaime; Rosier, Lionel; Takahashi, Takéo. On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 1, pp. 139-165. doi: 10.1016/j.anihpc.2005.12.004
[1] , , , Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces, J. Math. Pures Appl. (9) 76 (1) (1997) 55-81. | Zbl | MR
[2] , , , Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (5-6) (2000) 1019-1042. | Zbl
[3] , On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9) 75 (2) (1996) 155-188. | Zbl | MR
[4] , On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim. 37 (6) (1999) 1874-1896, (electronic). | Zbl | MR
[5] , , Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal. 146 (1) (1999) 59-71. | Zbl | MR
[6] , , On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 (7-8) (2000) 1399-1413. | Zbl
[7] , On the motion of rigid bodies in a viscous fluid, Appl. Math. 47 (6) (2002) 463-484. | Zbl | MR
[8] , On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal. 167 (4) (2003) 281-308. | Zbl | MR
[9] , On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Rational Mech. Anal. 148 (1) (1999) 53-88. | Zbl | MR
[10] , , Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. | Zbl
[11] G.P. Galdi, A.L. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle, Arch. Rational Mech. Anal., July 2004, in press. | Zbl
[12] , , Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. | Zbl
[13] , , Introduction à la mécanique des milieux continus, Masson, Paris, 1980. | Zbl | MR
[14] , Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var. 5 (2000) 1-44, (electronic). | Zbl | MR | Numdam
[15] , , Existence for an unsteady fluid-structure interaction problem, Math. Model. Numer. Anal. (M2AN) 34 (3) (2000) 609-636. | Zbl | Numdam
[16] , , , Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (3) (2000) 219-266. | Zbl | MR
[17] , Ordinary Differential Equations, second ed., Birkhäuser, Boston, MA, 1982. | MR
[18] , An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Rational Mech. Anal. 150 (1999) 307-348. | Zbl
[19] , , On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (2) (1999) 633-648. | Zbl | MR
[20] , , Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math. 5 (2000) 15-21, (electronic). | Zbl | MR
[21] , The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splošn. Sredy 255 (1974) 249-253, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami). | MR
[22] , On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967) 188-200. | Zbl | MR
[23] , Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1) (1983) 63-92. | Zbl | MR
[24] , , Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss., Band 181, Springer-Verlag, New York, 1972, (Translated from the French by P. Kenneth). | Zbl | MR
[25] , Mathematical Topics in Fluid Mechanics. Vol. 1, Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, The Clarendon Press, Oxford University Press, New York, 1996, Oxford Sci. Publ. | Zbl | MR
[26] , , Large time behavior for a simplified N-dimensional model of fluid-solid interaction, Comm. Partial Differential Equations 30 (1-3) (2005) 377-417. | Zbl
[27] , , , Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, ESAIM: M2AN 39 (1) (2005) 79-108. | Zbl | MR | Numdam
[28] , , , Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal. 161 (2) (2002) 113-147. | Zbl | MR
[29] , Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math. 4 (1) (1987) 99-110. | Zbl | MR
[30] , On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech. 4 (4) (2002) 285-326. | Zbl | MR
[31] , Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987) 65-96. | Zbl | MR
[32] , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton University Press, Princeton, NJ, 1993, (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III). | Zbl | MR
[33] , Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (12) (2003) 1499-1532. | Zbl
[34] , , Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech. 6 (1) (2004) 53-77. | Zbl | MR
[35] , Problèmes mathématiques en plasticité, Gauthier-Villars, Montrouge, 1983. | Zbl | MR
[36] , Navier-Stokes Equations, Theory and Numerical Analysis, third ed., North-Holland Publishing Co., Amsterdam, 1984, (With an appendix by F. Thomasset). | Zbl
[37] , , Large time behavior for a simplified 1D model of fluid-solid interaction, Comm. Partial Differential Equations 28 (9-10) (2003) 1705-1738. | Zbl
Cité par Sources :






