@article{AIHPC_2005__22_6_753_0,
author = {Schweizer, Ben},
title = {On the three-dimensional {Euler} equations with a free boundary subject to surface tension},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {753--781},
year = {2005},
publisher = {Elsevier},
volume = {22},
number = {6},
doi = {10.1016/j.anihpc.2004.11.001},
mrnumber = {2172858},
zbl = {02245285},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/}
}
TY - JOUR AU - Schweizer, Ben TI - On the three-dimensional Euler equations with a free boundary subject to surface tension JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 753 EP - 781 VL - 22 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/ DO - 10.1016/j.anihpc.2004.11.001 LA - en ID - AIHPC_2005__22_6_753_0 ER -
%0 Journal Article %A Schweizer, Ben %T On the three-dimensional Euler equations with a free boundary subject to surface tension %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 753-781 %V 22 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/ %R 10.1016/j.anihpc.2004.11.001 %G en %F AIHPC_2005__22_6_753_0
Schweizer, Ben. On the three-dimensional Euler equations with a free boundary subject to surface tension. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 6, pp. 753-781. doi: 10.1016/j.anihpc.2004.11.001
[1] , Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal. 84 (1984) 307-352. | Zbl | MR
[2] , , On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (12) (1998) 1149-1183. | Zbl | MR
[3] , , A bubble in ideal fluid with gravity, J. Differential Equations 81 (1989) 136-166. | Zbl | MR
[4] , , On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (12) (2000) 1536-1602. | Zbl | MR
[5] , The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Partial Differential Equations 12 (1987) 1175-1201. | Zbl | MR
[6] , Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., 1998. | Zbl | MR
[7] , , , On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (2) (1997) 199-223. | Zbl | MR
[8] , , , On a free boundary problem for an incompressible ideal fluid in two space dimensions, Adv. Math. Sci. Appl. 9 (1) (1999) 415-472. | Zbl | MR
[9] , , Well-posedness of the Euler and Navier-Stokes equations in Lebesgue spaces, Rev. Mat. Iberoamericana 2 (1986) 73-88. | Zbl | MR
[10] , , Non-Homogeneous Boundary Value Problems and Applications, I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, 1972. | Zbl
[11] , , Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Methods Appl. Sci. 12 (12) (2002) 1725-1740. | Zbl | MR
[12] , The Euler equation on a bounded domain as a quasilinear evolution equation, Commun. Appl. Nonlinear Anal. 3 (3) (1996) 107-113. | Zbl | MR
[13] , An existence theorem for a free surface flow problem with open boundaries, Comm. Partial Differential Equations 17 (1992) 1387-1405. | Zbl | MR
[14] , A two-component flow with a viscous and an inviscid fluid, Comm. Partial Differential Equations 25 (2000) 887-901. | Zbl | MR
[15] , Theory of Function Spaces, Monographs Math., vol. 78, Birkhäuser, 1983. | Zbl | MR
[16] , Theory of Function Spaces II, Monographs Math., vol. 84, Birkhäuser, 1992. | Zbl | MR
[17] , On the Bernoulli free boundary problem with surface tension, in: (Ed.), Free boundary problems: theory and applications, CRC Res. Notes Math., vol. 409, Chapman & Hall, 1999, pp. 246-251. | Zbl | MR
[18] , Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1) (1997) 39-72. | Zbl | MR
[19] , Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (2) (1999) 445-495. | Zbl | MR
Cité par Sources :





