@article{AIHPC_2005__22_4_441_0,
author = {Masmoudi, Nader and Zhang, Ping},
title = {Global solutions to vortex density equations arising from sup-conductivity},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {441--458},
year = {2005},
publisher = {Elsevier},
volume = {22},
number = {4},
doi = {10.1016/j.anihpc.2004.07.002},
mrnumber = {2145721},
zbl = {1070.35036},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/}
}
TY - JOUR AU - Masmoudi, Nader AU - Zhang, Ping TI - Global solutions to vortex density equations arising from sup-conductivity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 441 EP - 458 VL - 22 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/ DO - 10.1016/j.anihpc.2004.07.002 LA - en ID - AIHPC_2005__22_4_441_0 ER -
%0 Journal Article %A Masmoudi, Nader %A Zhang, Ping %T Global solutions to vortex density equations arising from sup-conductivity %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 441-458 %V 22 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/ %R 10.1016/j.anihpc.2004.07.002 %G en %F AIHPC_2005__22_4_441_0
Masmoudi, Nader; Zhang, Ping. Global solutions to vortex density equations arising from sup-conductivity. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 4, pp. 441-458. doi: 10.1016/j.anihpc.2004.07.002
[1] , , , A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (1996) 97-111. | Zbl | MR
[2] , Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup. 26 (1993) 517-542. | Zbl | MR | Numdam
[3] , , Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | Zbl | MR
[4] , , On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989) 321-366. | Zbl | MR
[5] , , Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987) 667-689. | Zbl | MR
[6] , , Existence of weak solutions to some vortex density models, SIAM J. Math. Anal. 34 (2003) 1279-1299. | Zbl | MR
[7] , Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991) 553-586. | Zbl | MR
[8] , , , Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity, Arch. Rational Mech. Anal. 145 (1998) 99-127. | Zbl | MR
[9] , Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, vol. 74, Amer. Math. Soc., Providence, RI, 1990. | Zbl | MR
[10] , , Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998) 99-125. | Zbl | MR
[11] , , , Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc. 347 (1995) 3921-3970. | Zbl | MR
[12] , Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 51 (1998) 323-359. | Zbl | MR
[13] , , On the hydrodynamic limit of Ginzburg-Landau vortices, Discrete Contin. Dynam. Systems 6 (2000) 121-142. | Zbl | MR
[14] , Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models, Lecture Series in Mathematics and its Applications, vol. 6, Clarendon Press, Oxford, 1998. | Zbl | MR
[15] , , Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B 21 (2000) 131-146. | Zbl | MR
[16] , Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations 7 (1982) 959-1000. | Zbl | MR
[17] , Compensated compactness and applications to partial differential equations, in: (Ed.), Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Research Notes in Math., vol. 39, Pitman, 1979. | Zbl | MR
[18] , , On -vorticity for 2-D incompressible flow, Manuscripta Math. 78 (1993) 403-412. | Zbl | MR
[19] , Dynamics of vortex liquids in Ginsburg-Landau theories with application to superconductivity, Phys. Rev. B 50 (1994) 1126-1135. | Zbl
[20] , Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. | Zbl | MR
[21] , Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Math. 3 (1963) 1032-1066, (in Russian). English translation, USSR Comput. Math. Phys. 3 (1963) 1407-1456. | Zbl
[22] , , Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rational Mech. Anal. 155 (2000) 49-83. | Zbl | MR
[23] , , Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations 26 (2001) 381-420. | Zbl | MR
[24] P. Zhang, Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data, Ann. Inst. H. Poincaré Anal. Non Linéaire (2005), in press. | Zbl | MR | Numdam
Cité par Sources :






