@article{AIHPC_2004__21_4_517_0,
author = {Jalade, Emmanuel},
title = {Inverse problem for a nonlinear {Helmholtz} equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {517--531},
year = {2004},
publisher = {Elsevier},
volume = {21},
number = {4},
doi = {10.1016/j.anihpc.2003.07.001},
mrnumber = {2069636},
zbl = {1062.35173},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2003.07.001/}
}
TY - JOUR AU - Jalade, Emmanuel TI - Inverse problem for a nonlinear Helmholtz equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 517 EP - 531 VL - 21 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2003.07.001/ DO - 10.1016/j.anihpc.2003.07.001 LA - en ID - AIHPC_2004__21_4_517_0 ER -
%0 Journal Article %A Jalade, Emmanuel %T Inverse problem for a nonlinear Helmholtz equation %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 517-531 %V 21 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2003.07.001/ %R 10.1016/j.anihpc.2003.07.001 %G en %F AIHPC_2004__21_4_517_0
Jalade, Emmanuel. Inverse problem for a nonlinear Helmholtz equation. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 4, pp. 517-531. doi: 10.1016/j.anihpc.2003.07.001
[1] , , Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 1998. | Zbl | MR
[2] , The Analysis of Linear Partial Differential Operators II, Springer-Verlag, 1983. | Zbl | MR
[3] , , Global uniqueness for a 2-dimensional semilinear elliptic problem, Trans. Amer. Math. Soc. 347 (1995) 3375-3390. | Zbl | MR
[4] , , Global uniqueness for a semilinear elliptic inverse problem, CPAM 47 (1994) 1403-1410. | Zbl | MR
[5] , Reconstruction from boundary measurement, Ann. Math. 128 (1988) 531-577. | Zbl
[6] , Nonlinear scattering theory, in: , (Eds.), Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 1974.
[7] , Inverse scattering for the nonlinear Schrödinger equation II. Reconstruction of the potential and the nonlinearity in the multidimensional case, Proc. Amer. Math. Soc. 129 (12) (2002) 3637-3645. | Zbl | MR
Cité par Sources :






