Statistical mechanics of the N-point vortex system with random intensities on a bounded domain
Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 3, pp. 381-399.
@article{AIHPC_2004__21_3_381_0,
     author = {Neri, Cassio},
     title = {Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {381--399},
     publisher = {Elsevier},
     volume = {21},
     number = {3},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.05.002},
     zbl = {1072.82026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/}
}
TY  - JOUR
AU  - Neri, Cassio
TI  - Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 381
EP  - 399
VL  - 21
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/
DO  - 10.1016/j.anihpc.2003.05.002
LA  - en
ID  - AIHPC_2004__21_3_381_0
ER  - 
%0 Journal Article
%A Neri, Cassio
%T Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 381-399
%V 21
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/
%R 10.1016/j.anihpc.2003.05.002
%G en
%F AIHPC_2004__21_3_381_0
Neri, Cassio. Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain. Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 3, pp. 381-399. doi : 10.1016/j.anihpc.2003.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/

[1] Book D.L., Fisher S., Mcdonald B.E., Steady-state distributions of interacting discrete vortices, Phys. Rev. Lett. 34 (1) (1975) 4-8.

[2] Caglioti E., Lions P.-L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (3) (1992) 501-525. | MR | Zbl

[3] Caglioti E., Lions P.-L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description II, Comm. Math. Phys. 174 (2) (1995) 229-260. | MR | Zbl

[4] Chen H.H., Lee Y.C., Ting A.C., Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation, Phys. D 26 (1987) 37-66. | MR | Zbl

[5] Joyce G., Montgomery D., Negative temperature states for the two-dimensional guiding-center plasma, J. Plasma Phys. 10 (1) (1973) 107-121.

[6] Joyce G., Montgomery D., Statistical mechanics of “negative temperature” states, Phys. Fluids 17 (6) (1974) 1139-1145.

[7] Hewitt E., Savage L.J., Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) 470-501. | MR | Zbl

[8] Kiessling M.K.-H., Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (1) (1993) 27-56. | MR | Zbl

[9] Lundgren T.S., Pointin Y.B., Statistical mechanics of two-dimensional vortices in a bounded container, Phys. Fluids 19 (10) (1973) 1459-1470. | Zbl

[10] Lundgren T.S., Pointin Y.B., Statistical mechanics of two-dimensional vortices, J. Stat. Phys. 17 (5) (1977) 323-355.

[11] Mcdonald B.E., Numerical calculation of non unique solutions of a two-dimensional sinh-Poisson equation, J. Comp. Phys. 16 (1974) 360-370. | Zbl

[12] Montgomery D., Two-dimensional vortex motion and “negative temperatures”, Phys. Lett. A 39 (1972) 7-8.

[13] Montgomery D., Tappert D., Conductivity of a two-dimensional guiding center plasma, Phys. Fluids 15 (1972) 683-687.

[14] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71) 1077-1092. | MR | Zbl

[15] Onsager L., Statistical hydrodynamics, Nuovo Cimento (9) 6 (2) (1949) 279-287, Supplemento (Convegno Internazionale di Meccanica Statistica). | MR

[16] Ruelle D., Statistical Mechanics: Rigorous Results, W. A. Benjamin, New York, 1969. | MR | Zbl

Cited by Sources: