@article{AIHPC_2004__21_3_381_0, author = {Neri, Cassio}, title = {Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {381--399}, publisher = {Elsevier}, volume = {21}, number = {3}, year = {2004}, doi = {10.1016/j.anihpc.2003.05.002}, zbl = {1072.82026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/} }
TY - JOUR AU - Neri, Cassio TI - Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 381 EP - 399 VL - 21 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/ DO - 10.1016/j.anihpc.2003.05.002 LA - en ID - AIHPC_2004__21_3_381_0 ER -
%0 Journal Article %A Neri, Cassio %T Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 381-399 %V 21 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/ %R 10.1016/j.anihpc.2003.05.002 %G en %F AIHPC_2004__21_3_381_0
Neri, Cassio. Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain. Annales de l'I.H.P. Analyse non linéaire, Volume 21 (2004) no. 3, pp. 381-399. doi : 10.1016/j.anihpc.2003.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2003.05.002/
[1] Steady-state distributions of interacting discrete vortices, Phys. Rev. Lett. 34 (1) (1975) 4-8.
, , ,[2] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (3) (1992) 501-525. | MR | Zbl
, , , ,[3] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description II, Comm. Math. Phys. 174 (2) (1995) 229-260. | MR | Zbl
, , , ,[4] Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation, Phys. D 26 (1987) 37-66. | MR | Zbl
, , ,[5] Negative temperature states for the two-dimensional guiding-center plasma, J. Plasma Phys. 10 (1) (1973) 107-121.
, ,[6] Statistical mechanics of “negative temperature” states, Phys. Fluids 17 (6) (1974) 1139-1145.
, ,[7] Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) 470-501. | MR | Zbl
, ,[8] Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (1) (1993) 27-56. | MR | Zbl
,[9] Statistical mechanics of two-dimensional vortices in a bounded container, Phys. Fluids 19 (10) (1973) 1459-1470. | Zbl
, ,[10] Statistical mechanics of two-dimensional vortices, J. Stat. Phys. 17 (5) (1977) 323-355.
, ,[11] Numerical calculation of non unique solutions of a two-dimensional sinh-Poisson equation, J. Comp. Phys. 16 (1974) 360-370. | Zbl
,[12] Two-dimensional vortex motion and “negative temperatures”, Phys. Lett. A 39 (1972) 7-8.
,[13] Conductivity of a two-dimensional guiding center plasma, Phys. Fluids 15 (1972) 683-687.
, ,[14] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71) 1077-1092. | MR | Zbl
,[15] Statistical hydrodynamics, Nuovo Cimento (9) 6 (2) (1949) 279-287, Supplemento (Convegno Internazionale di Meccanica Statistica). | MR
,[16] Statistical Mechanics: Rigorous Results, W. A. Benjamin, New York, 1969. | MR | Zbl
,Cited by Sources: