@article{AIHPC_1999__16_5_593_0,
author = {Marcus, Moshe and Zaslavski, Alexander J.},
title = {The structure of extremals of a class of second order variational problems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {593--629},
year = {1999},
publisher = {Gauthier-Villars},
volume = {16},
number = {5},
mrnumber = {1712568},
zbl = {0989.49003},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1999__16_5_593_0/}
}
TY - JOUR AU - Marcus, Moshe AU - Zaslavski, Alexander J. TI - The structure of extremals of a class of second order variational problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1999 SP - 593 EP - 629 VL - 16 IS - 5 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1999__16_5_593_0/ LA - en ID - AIHPC_1999__16_5_593_0 ER -
%0 Journal Article %A Marcus, Moshe %A Zaslavski, Alexander J. %T The structure of extremals of a class of second order variational problems %J Annales de l'I.H.P. Analyse non linéaire %D 1999 %P 593-629 %V 16 %N 5 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1999__16_5_593_0/ %G en %F AIHPC_1999__16_5_593_0
Marcus, Moshe; Zaslavski, Alexander J. The structure of extremals of a class of second order variational problems. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) no. 5, pp. 593-629. https://www.numdam.org/item/AIHPC_1999__16_5_593_0/
[1] , Sobolev spaces, Academic Press, New York, 1975. | Zbl | MR
[2] and , Applied nonlinear analysis, Wiley-Interscience, New York, 1984. | Zbl | MR
[3] , Lower semicontinuity of integral functionals, Trans. Amer. Math. Soc., Vol. 192, 1974, pp. 51-57. | Zbl | MR
[4] , The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay, SIAM Journal on Control and Optimization, Vol. 28 , 1990, pp. 402-422. | Zbl | MR
[5] , and , Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals, SIAM Journal on Control and Optimization, Vol. 25, 1987 , pp. 1517-1541. | Zbl | MR
[6] , and , Infinite horizon optimal control, Springer-Verlag, Berlin, 1991. | Zbl | MR
[7] , and , On the thermodynamics of periodic phases, Arch. Rational Mech. Anal., Vol. 117, 1992, pp. 321-347. | Zbl | MR
[8] , General topology, Van Nostrand , Princeton, NJ, 1955. | Zbl | MR
[9] , Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim., Vol. 13, 1985 , pp. 19-43. | Zbl | MR
[10] and , One dimensional infinite horizon variational problems arising in continuum mechanics , Arch. Rational Mech. Anal., Vol. 106, 1989, pp. 161- 194. | Zbl | MR
[11] and , Mathematical theory of econimic dynamics and equilibria, Springer -Verlag, New York, 1977. | Zbl | MR
[12] , Uniform estimates for a variational problem with small parameters, Arch. Rational Mech. Anal., Vol. 124, 1993 , pp. 67-98. | Zbl | MR
[13] , Universal properties of stable states of a free energy model with small parameters, Cal. Var. , to appear. | Zbl | MR
[14] , and , Periodic phases in second order materials, Preprint, 1997. | MR
[15] , The existence of periodic minimal energy configurations for one-dimensional infinite horizon variational problems arising, in continuum mechanics, J. Math. Anal. Appl., Vol. 194, 1995, pp. 459-476. | Zbl | MR
[16] , The existence and structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl., Vol. 194, 1995, pp. 660-696. | Zbl | MR
[17] , Structure of extremals for one-dimensional variational problems arising in continuum mechanics , J. Math. Anal. Appl., Vol. 198, 1996, pp. 893-921. | Zbl | MR
[18] , The asymptotic turnpike property and the uniqueness of a periodic minimal solution for one-dimensional variational problems, Preprint, 1996. | MR






